题目列表(包括答案和解析)
(本题满分14分)
如图所示,已知曲线与曲线交于点O、A,直线(0<t≤1)与曲线C1、C2分别相交于点D、B,连接OD、DA、AB。
(1)写出曲边四边形ABOD(阴影部分)的面积S与t的函数关系式;
(2)求函数在区间上的最大值。
(本题满分14分)
如图所示,已知曲线与曲线交于点O、A,直线(0<t≤1)与曲线C1、C2分别相交于点D、B,连接OD、DA、AB。
(1)写出曲边四边形ABOD(阴影部分)的面积S与t的函数关系式;
(2)求函数在区间上的最大值。
为了求函数,函数,轴围成的曲边三角形的面积,古人想出了两种方案求其近似解(如图):第一次将区间二等分,求出阴影部分矩形面积,记为;第二次将区间三等分,求出阴影部分矩形面积,记为;第三次将区间四等分,求出
……依此类推,记方案一中,方案二中,其中
① 求
② 求的通项公式,并证明
③ 求的通项公式,类比第②步,猜想的取值范围。并由此推出的值(只需直接写出的范围与的值,无须证明)
参考公式:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com