题目列表(包括答案和解析)
(A) (B) (C) (D)
(A) (B) (C) (D)
(A) (B) (C) (D)
(A)(B)(C) (D)
(A) (B) (C) (D)
一.选择题:本大题共12小题,每小题5分,共60分。
(1)B (2)A (3)B (4)A (5)C (6)D
(7)A (8)C (9)B (10)A (11)D (12)B
二.填空题:本大题共4小题,每小题5分,共20分。
(13) (14) (15)
(16)
三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分10分)
(Ⅰ)解法一:由正弦定理得.
故 ,
又 ,
故 ,
即 ,
故 .
因为 ,
故 ,
又 为三角形的内角,
所以 . ………………………5分
解法二:由余弦定理得 .
将上式代入 整理得.
故 ,
又 为三角形内角,
所以 . ………………………5分
(Ⅱ)解:因为.
故 ,
由已知 得
又因为 .
得 ,
所以 ,
解得 . ………………………………………………10分
(18)(本小题满分12分)
(Ⅰ)证明:
∵面,面,
∴.
又∵底面是正方形,
∴.
又∵,
∴面,
又∵面,
∴平面平面. ………………………………………6分
(Ⅱ)解法一:如图建立空间直角坐标系.
设,则,在中,.
∴、、、、、.
∵为的中点,,
∴.
设是平面的一个法向量.
则由 可求得.
由(Ⅰ)知是平面的一个法向量,
且,
∴,即.
∴二面角的大小为. ………………………………………12分
解法二:
设,则,
在中,.
设,连接,过作于,
连结,由(Ⅰ)知面.
∴在面上的射影为,
∴.
故为二面角的平面角.
在中,,,.
∴,
∴.
∴.
即二面角的大小为. …………………………………12分
(19)(本小题满分12分)
(Ⅰ)解:设、两项技术指标达标的概率分别为、.
由题意得: …………2分
∴.
即一个零件经过检测为合格品的概率为. …………6分
(Ⅱ)设该工人一个月生产的20件新产品中合格品有件,获得奖金元,则
. ………………8分
~,, ………………10分
.
即该工人一个月获得奖金的数学期望是800元. ………………12分
(20)(本小题满分12分)
解:(Ⅰ)设双曲线方程为,,
由,及勾股定理得,
由双曲线定义得 .
则. ………………………………………5分
(Ⅱ),,故双曲线的两渐近线方程为.
因为过, 且与同向,故设的方程为,
则
又的面积,所以.
可得与轴的交点为.
设与交于点,与交于点,
由得;由得.
故,
,,
从而.
故的取值范围是. …………………………12分
(21)(本小题满分12分)
解:(Ⅰ),
.
又因为函数在上为增函数,
在上恒成立,等价于
在上恒成立.
又,
故当且仅当时取等号,而,
的最小值为. ………………………………………6分
(Ⅱ)由已知得:函数为奇函数,
, , ………………………………7分
.
切点为,其中,
则切线的方程为: ……………………8分
由,
得.
又,
,
,
,
或,由题意知,
从而.
,
,
. ………………………………………12分
(22)(本小题满分12分)
(Ⅰ)解: 由,得
,. …………………………3分
(Ⅱ)由(Ⅰ)归纳得, ………………………4分
用数学归纳法证明:
①当时,成立.
②假设时,成立,
那么
所以当时,等式也成立.
由①、②得对一切成立. ……………8分
(Ⅲ)证明: 设,则,
所以在上是增函数.
故.
即.
因为,
故.
=.…………12分
本资料由《七彩教育网》www.7caiedu.cn 提供!
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com