复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为[a.b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可,若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域.相当于x∈[a,b]时.求g的定义域),研究函数的问题一定要注意定义域优先的原则. (2)复合函数的单调性由“同增异减 判定, 查看更多

 

题目列表(包括答案和解析)

平面直角坐标系内的向量都可以用一有序实数对唯一表示,这使我们想到可以用向量作为解析几何的研究工具.如图,设直线l的倾斜角为α(α90°).在l上任取两个不同的点,不妨设向量的方向是向上的,那么向量的坐标是().过原点作向量,则点P的坐标是(),而且直线OP的倾斜角也是α.根据正切函数的定义得

这就是《数学2》中已经得到的斜率公式.上述推导过程比《数学2》中的推导简捷.你能用向量作为工具讨论一下直线的有关问题吗?例如:

(1)过点,平行于向量的直线方程;

(2)向量(AB)与直线的关系;

(3)设直线的方程分别是

那么,的条件各是什么?如果它们相交,如何得到它们的夹角公式?

(4)到直线的距离公式如何推导?

查看答案和解析>>

根据下列条件分别求出函数f(x)的解析式
观察法:(1)f(x+
1
x
)=x2+
1
x2
求f(x);
换元法:(2)f(x-2)=x2+3x+1求f(x);
待定系数法:(3)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);
复合函数的解析式:(4)已知f(x)=x2-1,g(x)=
x+1
,求f[g(x)]]和g[f(x)]的解析式,交代定义域.

查看答案和解析>>

试根据复合函数的求导法则,研究函数f(x)=xx(x>0)的性质,并回答:下列命题中假命题的个数是(  )
①f(x)的极大值为1;
②f(x)的极小值为1;
③f(x)的一个单调递增区间是(
1
10
,10)
A、0B、1C、2D、3

查看答案和解析>>

利用复合函数的单调性求y=-x的值域.

查看答案和解析>>

设函数f1(x)=f2(x)=x-1f3(x)=x2,则f1(f2(f3(2 013)))=________.

思路 本题是一个三次复合函数求值问题,首先求f3(2 013),在此基础上求f2f1.

查看答案和解析>>


同步练习册答案