等差数列和等比数列的概念.有关公式和性质 等差数列 等比数列 定义 通项公式 =+(n-1)d=+(n-k)d=+-d 求和公式 中项公式 A= 推广:2= .推广: 性质 1 若m+n=p+q则 若m+n=p+q.则. 2 若成A.P(其中)则也为A.P. 若成等差数列 (其中).则成等比数列. 3 . 成等差数列. 成等比数列. 4 . 查看更多

 

题目列表(包括答案和解析)

类比是一个伟大的引路人.我们知道,等差数列和等比数列有许多相似的性质,请阅读下表并根据等差数列的结论,类似的得出等比数列的两个结论:
bn=
 
,dn=
 

等差数列{an} 等比数列{bn}
an=a1+(n-1)d bn=b1qn-1
an=am+(n-m)d bn
 
若cn=
a1+a2a3+∧+an
n

则数列{cn}为等差数列
若dn=
 

则数列{dn}为等比数列

查看答案和解析>>

(理)已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*)
,O为坐标原点,其中{an}、{bn}分别为等差数列和等比数列,P1是线段AB的中点,对于给定的公差不为零的an,都能找到唯一的一个bn,使得P1,P2,P3,…,Pn,…,都在一个指数函数
 
(写出函数的解析式)的图象上.

查看答案和解析>>

已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*),其中an,bn分别为等差数列和等比数列,O为坐标原点,P1是线段AB的中点.
(1)求a1,b1的值;
(2)判断点P1,P2,P3,…,Pn,…能否在同一条直线上,并证明你的结论;
(3)设数列an的公差为2,在数列cn中,c1=1,c2=-13,cn+2-2cn+1+cn=an(n∈N*),求出cn取得最小值时n的值.

查看答案和解析>>

(2007•深圳一模)已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*)
,其中{an}、{bn}分别为等差数列和等比数列,O为坐标原点,若P1是线段AB的中点.
(Ⅰ)求a1,b1的值;
(Ⅱ)点P1,P2,P3,…,Pn,…能否共线?证明你的结论;
(Ⅲ)证明:对于给定的公差不零的{an},都能找到唯一的一个{bn},使得P1,P2,P3,…,Pn,…,都在一个指数函数的图象上.

查看答案和解析>>

已知数列{an},{bn}分别是等差数列和等比数列,且a2=b2=2,a4=b4=8.
(1)求数列{an},{bn}的通项an,bn
(2)求数列{an},{bn}的前n项和Sn,Tn

查看答案和解析>>


同步练习册答案