题目列表(包括答案和解析)
本小题满分14分) 已知平面区域D由
以P(1,2)、R(3,5)、Q(-3,4)为顶点的
三角形内部和边界组成
(1)写出表示区域D的不等式组
(2)设点(x,y)在区域D内变动,求目标函数
Z=2x+y的最小值;
(3)若在区域D内有无穷多个点(x,y)可使目标函数取得最小值,求m的值。
本小题满分14分)已知平面区域D由
以P(1,2)、R(3,5)、Q(-3,4)为顶点的
三角形内部和边界组成
(1)写出表示区域D的不等式组
(2)设点(x,y)在区域D内变动,求目标函数
Z=2x+y的最小值;
(3)若在区域D内有无穷多个点(x,y)可使目标函数取得最小值,求m的值。
(2009山东卷文) (本小题满分14分)
设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;
(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
(本小题满分14分)
在△OAB的边OA,OB上分别有一点P,Q,已知:=1:2, :=3:2,连结AQ,BP,设它们交于点R,若=a,=b.
(1)用a与 b表示;
(2)过R作RH⊥AB,垂足为H,若| a|=1, | b|=2, a与 b的夹角的取值范围.
(满分14分)设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;
(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com