32.如图.平面PAD平面ABCD.PAD是正三角形. ABCD是矩形.M是AB的中点.PC与平面ABCD成角. (1) 求的值, (2) 求二面角P-MC-D的大小, (3) 当AD的长为多少时.点D到平面PMC的距离为2. 解:(1)取AD中点H.则.面PAD平面ABCD. 面ABCD.PC与面ABCD所成的角为. 设AD=a.则... (2)连结HM.由∽可得:. .由三垂线定理得. 是二面角P-MC-D的平面角. .. 二面角P-MC-D的平面角为 由可得:AD=. 查看更多

 

题目列表(包括答案和解析)

如图,平面PAD⊥平面ABCD,四边形ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G,H分别是线段PA,PD,CD,AB的中点.
(Ⅰ)求证:PB∥平面EFGH;
(Ⅱ)求二面角C-EF-G的余弦值.

查看答案和解析>>

如图,平面PAD⊥平面ABCD,四边形ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.
(1)求证:EF⊥平面PAB;
(2)求异面直线EG与BD所成的角的余弦值.

查看答案和解析>>

如图,平面PAD⊥平面ABCD,四边形ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.
(1)求证:EF⊥平面PAB;
(2)求异面直线EG与BD所成的角的余弦值.

查看答案和解析>>

如图,平面PAD⊥平面ABCD,四边形ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G,H分别是线段PA,PD,CD,AB的中点.
(Ⅰ)求证:PB∥平面EFGH;
(Ⅱ)求二面角C-EF-G的余弦值.

查看答案和解析>>

如图,平面PAD⊥平面ABCD,四边形ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.
(1)求证:EF⊥平面PAB;
(2)求异面直线EG与BD所成的角的余弦值.

查看答案和解析>>


同步练习册答案