5.将新数据列中的第5个数97与右边相邻的数13进行比较.因为13<97.97应下沉.所以顺序改变.得到新的数据列: {38.49.65. 76. 13.97.27.49} 查看更多

 

题目列表(包括答案和解析)

杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:
(1)求第20行中从左到右的第4个数;
(2)若第n行中从左到右第14与第15个数的比为
2
3
,求n的值;
(3)求n阶(包括0阶)杨辉三角的所有数的和;
(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m、k(m,k∈N×)的数学公式表示上述结论,并给予证明.
第0行 1 第1斜列
第1行 1 1 第2斜列
第2行 1 2 1 第3斜列
第3行 1 3 3 1 第4斜列
第4行 1 4 6 4 1 第5斜列
第5行 1 5 10 10 5 1 第6斜列
第6行 1 6 15 20 15 6 1 第7斜列
第7行 1 7 21 35 35 21 7 1 第8斜列
第8行 1 8 28 56 70 56 28 8 1 第9斜列
第9行 1 9 36 84 126 126 84 36 9 1 第10斜列
第10行 1 10 45 120 210 252 210 120 45 10 1 第11斜列
第11行 1 11 55 165 330 462 462 330 165 55 11 1 第12斜列
11阶杨辉三角

查看答案和解析>>

杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图所示是一个11阶杨辉三角:

(1)求第20行中从左到右的第4个数;
(2)若第n行中从左到右第14与第15个数的比为
23
,求n的值;
(3)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m,k(m,k∈N*)的数学公式表示上述结论,并给予证明.

查看答案和解析>>

在如图所示的数表中,第i行第j列的数记为ai,j,且满足a1,j=2j-1,ai,1=i,ai+1,j+1=ai,j+ai+1,j(i,j∈N*),MN⊥BC,则此数表中的第5行第3列的数是
 
;记第3行的数3,5,8,13,22,N为数列{bn},则数列{bn}的通项公式为
 

第1行   1   2  4  8…
第2行   2   3  5  9…
第3行   3   5  8  13…

查看答案和解析>>

用1,2,3,4,5,6这六个数字组成的四位数中,试回答下面问题
(1)一共有多少个没重复数字的四位数?
(2)若把(1)中这些没重复数字按从小到大的顺序排成一列,则3241是第几个数?
(3)(2)中的第100个数字是多少?

查看答案和解析>>

(本题满分15分)杨辉是中国南宋末年的一位杰出的数学家、数学教育家,杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.下图是一个11阶杨辉三角:

(1)求第20行中从左到右的第3个数;
(2)若第行中从左到右第13与第14个数的比为,求的值;
(3)写出第行所有数的和,写出阶(包括阶)杨辉三角中的所有数的和;
(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35,我们发现,事实上,一般地有这样的结论:第斜列中(从右上到左下)前个数之和,一定等于第斜列中第个数.
试用含有的数学式子表示上述结论,并证明.

查看答案和解析>>


同步练习册答案