题目列表(包括答案和解析)
过抛物线的对称轴上的定点,作直线与抛物线相交于两点.
(I)试证明两点的纵坐标之积为定值;
(II)若点是定直线上的任一点,试探索三条直线的斜率之间的关系,并给出证明.
【解析】本题主要考查抛物线与直线的位置关系以及发现问题和解决问题的能力.
(1)中证明:设下证之:设直线AB的方程为: x=ty+m与y2=2px联立得消去x得y2=2pty-2pm=0,由韦达定理得
(2)中:因为三条直线AN,MN,BN的斜率成等差数列,下证之
设点N(-m,n),则直线AN的斜率KAN=,直线BN的斜率KBN=
KAN+KBN=+
本题主要考查抛物线与直线的位置关系以及发现问题和解决问题的能力.
x2 |
a2 |
y2 |
b2 |
x2 |
4 |
x2 |
16 |
y2 |
4 |
x2 |
4 |
x2 |
16 |
y2 |
4 |
x2 |
a2 |
y2 |
b2 |
x2 |
a2 |
y2 |
b2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com