已知.试根据以下条件求的最大.小值. (1)取任意实数 (2) (3) (4) 查看更多

 

题目列表(包括答案和解析)

已知l表示空间一条直线,a,b表示空间两个不重合的平面,有以下三个语句:①l⊥a;②l∥b;③a⊥b,以其中任意两个作为条件,另外一个作为结论,可以得到三个命题,其中正确命题的个数是(  )

查看答案和解析>>

已知双曲线C的两条渐近线都过原点,且都以点A(
2
,0)为圆心,1为半径的圆相切,双曲线的一个顶点A′与A点关于直线y=x对称.
(1)求双曲线C的方程;
(2)设直线l过点A,斜率为k,当0<k<1时,双曲线C的上支上有且仅有一点B到直线l的距离为
2
,试求k的值及此时B点的坐标.

查看答案和解析>>

(2012•湖南模拟)选做题(请考生在第16题的三个小题中任选两题作答,如果全做,则按前两题记分,要写出必要的推理与演算过程)
(1)如图,已知Rt△ABC的两条直角边BC,AC的长分别为3cm,4cm,以AC为直径作圆与斜边AB交于点D,试求BD的长.
(2)已知曲线C的参数方程为
x=1+cosθ
y=sinθ
(θ为参数),求曲线C上的点到直线x-y+1=0的距离的最大值.
(3)若a,b是正常数,a≠b,x,y∈(0,+∞),则
a2
x
+
b2
y
(a+b)2
x+y
,当且仅当
a
x
=
b
y
时上式取等号.请利用以上结论,求函数f(x)=
2
x
+
9
1-2x
(x∈0,
1
2
)的最小值.

查看答案和解析>>

已知一条不在y轴左侧的曲线E上的每个点到A(1,0)的距离减去它到y轴的距离差都是1.
(1)求曲线E的方程;
(2)已知曲线E的一条焦点弦被焦点分成长为m、n两部分,试判断
1
m
+
1
n
是否为定值,若是求出定值并加以证明,若不是,请说明理由.

查看答案和解析>>

已知双曲线C的一条渐近线为y=
1
2
x
,且与椭圆x2+
y2
6
=1
有公共焦点.
(1)求双曲线C的方程;
(2)直线l:x-
2
y-2=0
与双曲线C相交于A,B两点,试判断以AB为直径的圆是否过原点,并说明理由.

查看答案和解析>>


同步练习册答案