题目列表(包括答案和解析)
(本小题满分13分)
如图,在矩形木板中,,,在二面角的墙角处围出一个侧棱与底面垂直的直三棱柱的储物仓,其中要求垂直于地面的木板两边与墙面贴紧。
(Ⅰ)问应怎样围才能使储物仓的容积最大?并求出这个最大值?
(Ⅱ)在(Ⅰ)的条件下, 直线AB是否存在点P使得直线CP与平面所成角,若有则找出P点的位置;若不存在,请说明理由.
(本小题满分14分)
在一个半径为1的半球材料中截取三个高度均为h的圆柱,其轴截面如图所示,设三个圆柱体积之和为。
(1) 求f(h)的表达式,并写出h的取值范围是 ;
(2) 求三个圆柱体积之和V的最大值;
(10分)口袋中有大小、形状都相同的七个球,其中白球3个,红球4个,
(1)任取一个球投在一个面积为的正方形内,求球落在正方形内切圆内的概率;
(2)若在袋中任取两个,求取到红球的概率。
某国由于可耕地面积少,计划从今年起的五年填湖围造一部分生产和生活用地,若填湖费、购置排水设备费等所需经费与当年所填湖造地面积x(亩)的平方成正比,其比例系数为a,设每亩水面的年平均经济效益为b元,填湖造地后的每亩土地的年平均收益为c元(其中a,b,c均为常数)。
(1)若按计划填湖造地,且使得今年的收益不小于支出,试求所填面积x的最大值。
(2)如果填湖造地面积按每年1%的速度减少,为保证水面的畜洪能力和环保要求,填湖造地的总面积不能超过现有水面面积的25%,求今年填湖造地的面积最多只能占现有水面的百分之几。
注:根据下列近似值进行计算:
0.992≈0.98, 0.992≈0.97, 0.994≈0.96, 0.995≈0.95, 0.996≈0.94, 0.997≈0.93.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com