2. 假设当时.不等式成立.即 当时.左边= 由 所以 即当时.不等式也成立综上得 第三章 数系的扩充与复数的引入 第一讲 复数的相关概念和几何意义 [知识梳理] [知识盘点] 查看更多

 

题目列表(包括答案和解析)

对于不等式n+1(n∈N*),某学生的证明过程如下:

(1)当n=1时,≤1+1,不等式成立.

(2)假设n=k(k∈N*)时,不等式成立,即k+1,则n=k+1时,.

∴当n=k+1时,不等式成立.

上述证法(  )

A.过程全部正确

B.n=1时的验证不正确

C.归纳假设不正确

D.没有用到从n=kn=k+1的推理

查看答案和解析>>

对于不等式n+1(n∈N*),某学生的证明过程如下:

(1)当n=1时,≤1+1,不等式成立.

(2)假设n=k(k∈N*)时,不等式成立,即k+1,则n=k+1时,.

∴当n=k+1时,不等式成立.

上述证法(  )

A.过程全部正确

B.n=1时的验证不正确

C.归纳假设不正确

D.没有用到从n=kn=k+1的推理

查看答案和解析>>

对于不等式某同学应用数学归纳法证明的过程如下:

(1)当时,,不等式成立

(2)假设时,不等式成立,即

那么时,

不等式成立根据(1)(2)可知,对于一切正整数不等式都成立。上述证明方法(     )

A.过程全部正确           B.验证不正确

C.归纳假设不正确         D.从的推理不正确

 

查看答案和解析>>

对于不等式<n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时,<1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式成立,即<k+1,则当n=k+1时,===(k+1)+1,∴当n=k+1时,不等式成立.
则上述证法( )
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确

查看答案和解析>>

对于不等式<n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时,<1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式成立,即<k+1,则当n=k+1时,===(k+1)+1,∴当n=k+1时,不等式成立.
则上述证法( )
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确

查看答案和解析>>


同步练习册答案