题目列表(包括答案和解析)
(本题16分)如图,某大风车的半径为2米,每12秒沿逆时针方向旋转一周,它的最底点离地面1米,风车圆周上一点A从最底点开始,运动t秒后与地面距离为h米,
(1)求函数h=f(t)的关系式, 并在给出的方格纸上用五点作图法作出h=f(t)在一个周期内的图象(要列表,描点);
(2) A从最底点开始, 沿逆时针方向旋转第一周内,有多长时间离地面的高度超过4米?
(本题16分)如图,某大风车的半径为2米,每12秒沿逆时针方向旋转一周,它的最底点离地面1米,风车圆周上一点A从最底点开始,运动t秒后与地面距离为h米,
(1)求函数h=f(t)的关系式, 并在给出的方格纸上用五点作图法作出h=f(t)在一个周期内的图象(要列表,描点);
(2) A从最底点开始, 沿逆时针方向旋转第一周内,有多长时间离地面的高度超过4米?
(本题16分)已知椭圆C1:上的点满足到两焦点的距离之和为4,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点。
(1) 求双曲线C2的方程;
(2) 若以椭圆的右顶点为圆心,该椭圆的焦距为半径作一个圆,一条过点P(1,1)直线与该圆相交,交点为A、B,求弦AB最小时直线AB的方程,求求此时弦AB的长。
(本题16分)已知函数,其中e是自然数的底数,,
(1)当时,解不等式;
(2)若当时,不等式恒成立,求a的取值范围;
(3)当时,试判断:是否存在整数k,使得方程在
上有解?若存在,请写出所有可能的k的值;若不存在,说明理由。
(本题16分)
如图,F是抛物线的焦点,Q是准线与轴的交点,斜率为的直线经过点Q.
(1)当K取不同数值时,求直线与抛物线交点的个数;
(2)如直线与抛物线相交于A、B两点,求证:是定值
(3)在轴上是否存在这样的定点M,对任意的过点Q的直线,如与抛物线相交于A、B两点,均能使得为定值,有则找出满足条
件的点M;没有,则说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com