由此得 查看更多

 

题目列表(包括答案和解析)

由坐标原点O向函数y=x3-3x2的图象W引切线l1,切点为P1(x1,y1)(P1,O不重合),再由点P1引W的切线l2,切点为P2(x2,y2)(P1,P2不重合),…,如此继续下去得到点列{Pn(xn,yn)}.
(Ⅰ)求x1的值;
(Ⅱ)求xn与xn+1满足的关系式;
(Ⅲ)求数列{xn}的通项公式.

查看答案和解析>>

由原点O向三次曲线y=x3-3ax2(a≠0)引切线,切点为P1(x1,y1)(O,P1两点不重合),再由P1引此曲线的切线,切于点P2(x2,y2)(P1,P2不重合),如此继续下去,得到点列:{Pn(xn,yn)}
(1)求x1
(2)求xn与xn+1满足的关系式;
(3)若a>0,试判断xn与a的大小关系,并说明理由

查看答案和解析>>

由一组样本数据(x1,y1),(x2,y2),…,(xn,yn)得到的回归直线方程为
?
y
=
?
b
x+
?
a
,若已知回归直线的斜率是1.05,且
.
x
=4,
.
y
=5
,则此回归直线方程是
y
=1.05x+0.8
y
=1.05x+0.8

查看答案和解析>>

由原点O向三次曲线y=x3-3ax2+bx(a≠0)引切线,切于不同于点O的点P1(x1,y1),再由P1引此曲线的切线,切于不同于P1的点P2(x2,y2),如此继续地作下去,…,得到点列{Pn(xn,yn)},试回答下列问题:
(1)求x1
(2)求xn与xn+1的关系;
(3)若a>0,求证:当n为正偶数时,xn<a;当n为正奇数时,xn>a.

查看答案和解析>>

由坐标原点O向曲线y=x3-3ax2+bx(a≠0)引切线,切于O以外的点P1(x1,y1),再由P1引此曲线的切线,切于P1以外的点P2(x2,y2),如此进行下去,得到点列{ Pn(xn,yn}}.
求:(Ⅰ)xn与xn-1(n≥2)的关系式;
(Ⅱ)数列{xn}的通项公式.

查看答案和解析>>


同步练习册答案