20.已知椭圆E:(a>b>0),以F1(-c,0)为圆心.以a-c为半径作圆F1.过点B2(0,b)作圆F1的两条切线.设切点为M.N. (1)若过两个切点M.N的直线恰好经过点B1(0,-b)时.求此椭圆的离心率; (2)若直线MN的斜率为-1,且原点到直线MN的距离为4(-1),求此时的椭圆方程, (3)是否存在椭圆E.使得直线MN的斜率k在区间(-)内取值?若存在.求出椭圆E的离心率e的取值范围,若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

(2012•佛山二模)已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的一个交点为F1(-
3
,0)
,而且过点H(
3
1
2
)

(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交x轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

(2012•佛山二模)已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点为F1(-
3
,0),而且过点H(
3
1
2
).
(1)求椭圆E的方程;
(2)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线OT与过点M,N的圆G相切,切点为G.证明:线段OT的长为定值.

查看答案和解析>>

如图,已知椭圆E:
x2
8
+
y2
4
=1
焦点为F1、F2,双曲线G:x2-y2=4,设P是双曲线G上异于顶点的任一点,直线PF1、PF2与椭圆的交点分别为A、B和C、D.
(1)设直线PF1、PF2的斜率分别为k1和k2,求k1•k2的值;
(2)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

如图,已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0),焦点为F1、F2,双曲线G:x2-y2=m(m>0)的顶点是该椭圆的焦点,设P是双曲线G上异于顶点的任一点,直线PF1、PF2与椭圆的交点分别为A、B和C、D,已知三角形ABF2的周长等于8
2
,椭圆四个顶点组成的菱形的面积为8
2

(1)求椭圆E与双曲线G的方程;
(2)设直线PF1、PF2的斜率分别为k1和k2,探求k1和k2的关系;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,试求出λ的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别为F1、F2,离心率e=
2
2
,点D(0,1)在且椭圆E上,
(Ⅰ)求椭圆E的方程;
(Ⅱ)设过点F2且不与坐标轴垂直的直线交椭圆E于A、B两点,线段AB的垂直平分线与x轴交于点G(t,0),求点G横坐标的取值范围.
(Ⅲ)试用表示△GAB的面积,并求△GAB面积的最大值.

查看答案和解析>>


同步练习册答案