解对数函数问题时.你注意到真数与底数的限制条件了吗?(真数大于零.底数大于零且不等于1)字母底数还需讨论呀. 例:函数的值域是R.则的取值范围是 .() 查看更多

 

题目列表(包括答案和解析)

阅读下列材料,然后解答问题;对于任意实数x,符号[x]表示“不超过x的最大整
数”,在数轴上,当x是整数,[x]是x,当x不是整数时,[x]是x左侧的第一个整数,这个函数叫做“取整函数”,也叫高斯(Gauss)函数,如[-2]=-2、[-1.5]=-2、[2.5]=2  定义函数{x}=x-[x],给出下列四个命题;
①函数[x]的定义域是R,值域为[0,1];
②方程{x}=
12
有无数个解;
③函数{x}是周期函数;
④函数{x}是增函数.
其中正确命题的序号是
 
(写出所有正确结论的序号)

查看答案和解析>>

已知对数函数y=loga(4-x),(a>0且a≠1)
(1)求函数的定义域
(2)直接判断函数单调性(不需证明)
(3)当a=2时,写出一个你喜欢的x值,并求出其对应的函数值.

查看答案和解析>>

“实系数一元二次方程ax2+bx+c=0有实数解”转化为“△=b2-4ac≥0”,你是否注意到必须a≠0;当a=0时,“方程有解”不能转化为△=b2-4ac≥0.若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能为零的情形?

查看答案和解析>>

已知函数f(x)=mx3+nx2(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,
b-a
b
<ln
b
a
b-a
a
(可不用证明函数的连续性和可导性).

查看答案和解析>>

(2008•浦东新区二模)问题:过点M(2,1)作一斜率为1的直线交抛物线y2=2px(p>0)于不同的两点A,B,且点M为AB的中点,求p的值.请阅读某同学的问题解答过程:
解:设A(x1,y1),B(x2,y2),则y12=2px1,y22=2px2,两式相减,得(y1-y2)(y1+y2)=2p(x1-x2).又kAB=
y1-y2x1-x2
=1
,y1+y2=2,因此p=1.
并给出当点M的坐标改为(2,m)(m>0)时,你认为正确的结论:
p=m(0<m<4)
p=m(0<m<4)

查看答案和解析>>


同步练习册答案