7.若一元二次方程ax2+bx+c=0的两根x1.x2满足m<x1<n<x2<p.则f 0. [解析] ∵a>0.∴f(x)=ax2+bx+c的图象开口向上. ∴f>0. [答案] < 查看更多

 

题目列表(包括答案和解析)

若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:

AB=|x1-x2|=

参考以上定理和结论,解答下列问题:

设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.

(1)当△ABC为直角三角形时,求b2-4ac的值;

(2)当△ABC为等边三角形时,求b2-4ac的值.

 

查看答案和解析>>

若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:
AB=|x1-x2|=

参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.

查看答案和解析>>

写出下列命题的逆命题、否命题、逆否命题.

(1)已知a、b、c、d是实数,若a=b,c=d;则a+c=b+d;

(2)关于x的实系数一元二次方程ax2+bx+c(a≠0),若Δ>0,则有两个不等实根.

查看答案和解析>>


同步练习册答案