求下列函数的单调递增区间: (1)y=,(2)y= 解 (1)函数的定义域为R. 令u=6+x-2x2,则y=()u. ∵二次函数u=6+x-2x2的对称轴为x=, 在区间[.+∞)上.u=6+x-2x2是减函数. 又函数y=()u是减函数. ∴函数y=在[.+∞)上是增函数. 故y=的单调递增区间为[.+∞). (2)令u=x2-x-6,则y=2u, ∵二次函数u=x2-x-6的对称轴是x=, 在区间[.+∞)上u=x2-x-6是增函数. 又函数y=2u为增函数. ∴函数在区间[.+∞)上是增函数. 故函数的单调递增区间是[.+∞). 查看更多

 

题目列表(包括答案和解析)

对于函数y=f(x)(x∈D,D是此函数的定义域)若同时满足下列条件:

(Ⅰ)f(x)在D内单调递增或单调递减;

(Ⅱ)存在区间[a,b]D,使f(x)在[a,b]上的值域为[a,b];那么,把y=f(x)(x∈D)叫闭函数.

(1)求闭函数y=-x3符合条件(Ⅱ)的区间[a,b];

(2)判断函数f(x)=x+(x∈R+)是否为闭函数?并说明理由;

(3)若y=k+是闭函数,求实数k的取值范围.

查看答案和解析>>

已知y=f(x)(x∈D,D为此函数的定义域)同时满足下列两个条件:①函数f(x)在D内单调递增或单调递减;②如果存在区间[a,b]D,使函数f(x)在区间[a,b]上的值域为[a,b],那么称y=f(x),x∈D为闭函数;请解答以下问题:
(1)求闭函数y=-x3符合条件②的区间;
(2)判断函数是否为闭函数?并说明理由;
(3)若y=k+(k<0)是闭函数,求实数k的取值范围。

查看答案和解析>>

已知y=f(x)(x∈D,D为此函数的定义域)同时满足下列两个条件:①函数f(x)在D内单调递增或单调递减;②如果存在区间[a,b]⊆D,使函数f(x)在区间[a,b]上的值域为[a,b],那么称y=f(x),x∈D为闭函数;请解答以下问题:
(1)求闭函数y=-x3符合条件②的区间[a,b];
(2)判断函数f(x)=
3
4
x+
1
x
(x∈(0,+∞))
是否为闭函数?并说明理由;
(3)若y=k+
x
(k<0)
是闭函数,求实数k的取值范围.

查看答案和解析>>

已知y=f(x)(x∈D,D为此函数的定义域)同时满足下列两个条件:①函数f(x)在D内单调递增或单调递减;②如果存在区间[a,b]⊆D,使函数f(x)在区间[a,b]上的值域为[a,b],那么称y=f(x),x∈D为闭函数.请解答以下问题:
(1)判断函数f(x)=1+x-x2(x∈(0,+∞))是否为闭函数?并说明理由;
(2)求证:函数y=-x3(x∈[-1,1])为闭函数;
(3)若y=k+
x
(k<0)
是闭函数,求实数k的取值范围.

查看答案和解析>>

已知y=f(x)(x∈D,D为此函数的定义域)同时满足下列两个条件:①函数f(x)在D内单调递增或单调递减;②如果存在区间[a,b]⊆D,使函数f(x)在区间[a,b]上的值域为[a,b],那么称y=f(x),x∈D为闭函数.请解答以下问题:
(1)判断函数f(x)=1+x-x2(x∈(0,+∞))是否为闭函数?并说明理由;
(2)求证:函数y=-x3(x∈[-1,1])为闭函数;
(3)若y=k+
x
(k<0)
是闭函数,求实数k的取值范围.

查看答案和解析>>


同步练习册答案