题目列表(包括答案和解析)
若二次函数f(x)=ax2+bx+c(a≠0)的图象和直线y=x无交点,现有下列结论:①方程f(f(x))=x一定没有实数根;
②若a>0,则不等式f(f(x))>x对一切实数x都成立;
③若a<0,则必存在实数x0,使f(f(x0))>x0;
④若a+b+c=0,则不等式f(f(x))<x对一切实数都成立;
⑤函数g(x)=ax2-bx+c的图象与直线y=-x也一定没有交点.
其中正确的结论是 (写出所有正确结论的编号).
|
令g()=af()+b,则下列关于函数g()的
叙述正确的是 ( )
A.若a<0,则函数g()的图象关于原点对称.
B.若a=-1,-2<b<0,则方程g()=0有大于2的实根.
C.若a≠0,b=2,则方程g()=0有两个实根.
D.若a≥1,b<2,则方程g()=0有三个实根
若a<0,则函数y=(1-a)x-1的图象必过点( )
A.(0,1) B.(0,0)
C.(0,-1) D.(1,-1)
已知命题p:函数f(x)=log0.5(3-x)的定义域为(-∞,3);命题q:若k<0,则函数h(x)=在(0,+∞)上是减函数.对以上两个命题,下列结论正确的是( ).
A.命题“p且q”为真 B.命题“p或q”为假
C.命题“p或q”为假 D.命题“p且q”为假
(2012年高考(浙江理))设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是 ( )
A.若d<0,则数列{S n}有最大项
B.若数列{S n}有最大项,则d<0
C.若数列{S n}是递增数列,则对任意的nN*,均有S n>0
D.若对任意的nN*,均有S n>0,则数列{S n}是递增数列
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com