已知函数在定义域内.当时取得极小值.当时取得极大值.⑴求函数的表达式,⑵求函数在上的最大值与最小值.(14) 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ax2+x-3,g(x)=-x+4lnx,h(x)=f(x)-g(x)
(1)当a=1时,求函数h(x)的极值;
(2)若函数h(x)有两个极值点,求实数a的取值范围;
(3)定义:对于函数F(x)和G(x),若存在直线?:y=kx+b,使得对于函数F(x)和G(x)各自定义域内的任意x,都有F(x)≥kx+b且G(x)≤kx+b成立,则称直线?:y=kx+b为函数F(x)和G(x)的“隔离直线”.则当a=1时,函数f(x)和g(x)是否存在“隔离直线”.若存在,求出所有的“隔离直线”;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=ax2+x-3,g(x)=-x+4lnx,h(x)=f(x)-g(x)
(1)当a=1时,求函数h(x)的极值;
(2)若函数h(x)有两个极值点,求实数a的取值范围;
(3)定义:对于函数F(x)和G(x),若存在直线?:y=kx+b,使得对于函数F(x)和G(x)各自定义域内的任意x,都有F(x)≥kx+b且G(x)≤kx+b成立,则称直线?:y=kx+b为函数F(x)和G(x)的“隔离直线”.则当a=1时,函数f(x)和g(x)是否存在“隔离直线”.若存在,求出所有的“隔离直线”;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=ax2+x-3,g(x)=-x+4lnx,h(x)=f(x)-g(x)
(1)当a=1时,求函数h(x)的极值;
(2)若函数h(x)有两个极值点,求实数a的取值范围;
(3)定义:对于函数F(x)和G(x),若存在直线?:y=kx+b,使得对于函数F(x)和G(x)各自定义域内的任意x,都有F(x)≥kx+b且G(x)≤kx+b成立,则称直线?:y=kx+b为函数F(x)和G(x)的“隔离直线”.则当a=1时,函数f(x)和g(x)是否存在“隔离直线”.若存在,求出所有的“隔离直线”;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=ax2+x-3,g(x)=-x+4lnx,h(x)=f(x)-g(x)
(1)当a=1时,求函数h(x)的极值;
(2)若函数h(x)有两个极值点,求实数a的取值范围;
(3)定义:对于函数F(x)和G(x),若存在直线?:y=kx+b,使得对于函数F(x)和G(x)各自定义域内的任意x,都有F(x)≥kx+b且G(x)≤kx+b成立,则称直线?:y=kx+b为函数F(x)和G(x)的“隔离直线”.则当a=1时,函数f(x)和g(x)是否存在“隔离直线”.若存在,求出所有的“隔离直线”;若不存在,请说明理由.

查看答案和解析>>

已知函数

(Ⅰ)讨论函数在定义域内的极值点的个数;

(Ⅱ)若函数处取得极值,且对,恒成立,

求实数的取值范围;

(Ⅲ)当时,试比较的大小。

 

查看答案和解析>>


同步练习册答案