(Ⅲ)设.当=-1时.证明在其定义域内恒成立.并证明(). 江西省高安中学2008-2009学年度下学期期中考试高二年级数学试题命题人:艾显锋 审题人:程呈祥题号123456789101112得分答案BABBBABACCAB 查看更多

 

题目列表(包括答案和解析)

.设函数y=f(x)的定义域为(0,+∞),且对任意的正实数x, y,均有

f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且当x>1时,f(x)>0。

   (1)求f(1), f()的值;

   (2)试判断y=f(x)在(0,+∞)上的单调性,并加以证明;

   (3)一个各项均为正数的数列{a??n}满足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是数列{an}的前n项和,求数列{an}的通项公式;

   (4)在(3)的条件下,是否存在正数M,使2n·a1·a2…an≥M·.(2a1-1)·(2a2-1)…(2an-1)对于一切n∈N*均成立?若存在,求出M的范围;若不存在,请说明理由.

查看答案和解析>>

.设函数y=f(x)的定义域为(0,+∞),且对任意的正实数x, y,均有
f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且当x>1时,f(x)>0。
(1)求f(1), f()的值;
(2)试判断y=f(x)在(0,+∞)上的单调性,并加以证明;
(3)一个各项均为正数的数列{a­n}满足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是数列{an}的前n项和,求数列{an}的通项公式;
(4)在(3)的条件下,是否存在正数M,使2n·a1·a2…an≥M·.(2a1-1)·(2a2-1)…(2an-1)对于一切n∈N*均成立?若存在,求出M的范围;若不存在,请说明理由.

查看答案和解析>>

设函数.

(1)若x=时,取得极值,求的值;

(2)若在其定义域内为增函数,求的取值范围;

(3)设,当=-1时,证明在其定义域内恒成立,并证明).

 

查看答案和解析>>

设函数.
(1)若x=时,取得极值,求的值;
(2)若在其定义域内为增函数,求的取值范围;
(3)设,当=-1时,证明在其定义域内恒成立,并证明).

查看答案和解析>>

设函数.
(1)若x=时,取得极值,求的值;
(2)若在其定义域内为增函数,求的取值范围;
(3)设,当=-1时,证明在其定义域内恒成立,并证明).

查看答案和解析>>


同步练习册答案