② ?>0是.的夹角为锐角的充要条件, 查看更多

 

题目列表(包括答案和解析)

已知向量
a
=(1,2),
b
=(1,1)且
a
a
b
的夹角为锐角,则实数λ的取值范围是
λ>-
5
3
且λ≠0
λ>-
5
3
且λ≠0

查看答案和解析>>

给出下列四个命题:
①“向量a,b的夹角为锐角”的充要条件是“a•b>0”;
②如果f(x)=lgx,则对任意的x1、x2∈(0,+∞),且x1≠x2,都有f(
x1+x2
2
)>
f(x1)+f(x2)
2

③将4个不同的小球全部放入3个不同的盒子,使得每个盒子至少放入1个球,共有72种不同的放法;
④记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f-1(1-x)的图象.
其中真命题的序号是
.(请写出所有真命题的序号)

查看答案和解析>>

已知
a
b
为非零向量,命题p:
a
b
>0
,命题q:
a
b
的夹角为锐角,则命题p是命题q的(  )
A、充分不必要的条件
B、既不充分也不必要的条件
C、充要条件
D、必要不充分的条件

查看答案和解析>>

(2012•浙江模拟)若
AB
=(x,y),x,y∈{-2,-1,0,1,2}
a
=(1,-1)
,则
AB
a
的夹角为锐角的概率是
8
25
8
25

查看答案和解析>>

已知
a
b
是两个非零向量,在下列四个说法中,正确的说法序号是
(1)(4)
(1)(4)

(1)|
a
|+|
b
|≥|
a
+
b
|
;  
(2)若
a
0
a
b
=0
,则
b
=
0

(3)若
a
b
>0
,则
a
b
夹角为锐角;
(4)若
a
b
夹角为θ,则|
b
|cosθ
表示向量
b
在向量
a
方向上的投影.

查看答案和解析>>

1-5  ACADC。 6-10   ACABB    11-12 DA

13. 28    14.      15. -4n+5 ;       16. ①③④

17.(1),即

      

       ,∴.                                  5分

  

18.解法一:证明:连结OC,

.   ----------------------------------------------------------------------------------1分

,

       ∴ .                ------------------------------------------------------2分

中,     

   ------------------3分

             

.  ----------------------------4分

       (II)过O作,连结AE,

       ,

∴AE在平面BCD上的射影为OE.

.  -----------------------------------------7分

中,,,,   

       ∴

       ∴二面角A-BC-D的大小为.   ---------------------------------------------------8分

       (III)解:设点O到平面ACD的距离为

 ∴

中,

            

,∴

         ∴点O到平面ACD的距离为.--------------------------------12分

        解法二:(I)同解法一.

       (II)解:以O为原点,如图建立空间直角坐标系,

则     

      

.  ------------6分

设平面ABC的法向量

夹角为,则

∴二面角A-BC-D的大小为. --------------------8分

       (III)解:设平面ACD的法向量为,又

       .   -----------------------------------11分

夹角为

   则     -       设O 到平面ACD的距离为h,

,∴O到平面ACD的距离为.  ---------------------12分

 

19.(Ⅰ)解:设“从甲盒内取出的2个球均为黑球”为事件,“从乙盒内取出的2个球均为黑球”为事件.由于事件相互独立,且

故取出的4个球均为黑球的概率为.…….6分

(Ⅱ)解:设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件.由于事件互斥,

故取出的4个球中恰有1个红球的概率为...12分

20. 解:(Ⅰ)由已知,当时,   ……………… 2分

,得,∴p=…………….4分

.……………… 6分

(Ⅱ)由(1)得,.       ……………… 7分

2  ;              ①

.    ②  ………9分

②-①得,

.       ………………12分

21.解(I)

 

(II)

时,是减函数,则恒成立,得

 

22.解(I)设

                   

(3分)

 

 (Ⅱ)(1)当直线的斜率不存在时,方程为

      

       …………(4分)

  (2)当直线的斜率存在时,设直线的方程为

       设

      ,得

       …………(6分)

      

      

…………………8分

                                      ………………….9分

注意也可用..........12分

 

 

 

 

 


同步练习册答案