21.如图.O是坐标原点.已知三 点E(0.3).F(0.1).G.直线L:y=-1.M是直线L上的动点.H.P是坐标平面上的动点.且 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

如图,已知在坐标平面xOy内,M、N是x轴上关于原点O对称的两点,P是上半平面内一点,△PMN的面积为,点A的坐标为(1+), =m· (m为常数),

 

(1)求以M、N为焦点且过点P的椭圆方程;

(2)过点B(-1,0)的直线l交椭圆于C、D两点,交直线x=-4于点E,点B、E分的比分别为λ1、λ2,求λ1+λ2的值。

 

查看答案和解析>>

(本小题满分12分)

        如图,A、B分别是椭圆的公共左右顶点,P、Q分别位于椭圆和双曲线上且不同于A、B的两点,设直线AP、BP、AQ、BQ的斜率分别为k1、k2、k3、k4且k1+k2­+k3+k4=0。

   (1)求证:O、P、Q三点共线;(O为坐标原点)

   (2)设F1、F2分别是椭圆和双曲线的右焦点,已知PF1//QF2,求的值。

 

 

查看答案和解析>>

(本小题满分12分)如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,∠POB=30°,曲线C是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C过点P.

(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;

(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F,求直线l斜率的取值范围.

              

查看答案和解析>>

(本小题满分12分)如图,已知M是函数图像C上一点,过M点作曲线C的切线与x轴、y轴分别交于点ABO是坐标原点,求面积的最小值.

 

  

查看答案和解析>>

(本小题满分12分)如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,∠POB=30°,曲线C是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C过点P.

(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;

(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F,求直线l斜率的取值范围.

              

查看答案和解析>>

 

一、选择题(每小题5分,共12小题,满分60分)

2,4,6

二、填空题(每小题4分,共4小题,满分16分)

13.800    14.    15.625    16.②④

三、解答题(本大题共6小题,满分74分)

17.解

   (Ⅰ)由题意知

……………………3分

……………………4分

的夹角

……………………6分

(Ⅱ)

……………………9分

有最小值。

的最小值是……………………12分

18.解:

(Ⅰ)设“一次取出3个球得4分”的事件记为A,它表示取出的球中有1个红球和2个黑球的情况

……………………4分

(Ⅱ)由题意,的可能取值为3、4、5、6。因为是有放回地取球,所以每次取到红球的概率为……………………6分

的分布列为

3

4

5

6

P

……………………10分

19.解:

连接BD交AC于O,则BD⊥AC,

连接A1O

在△AA1O中,AA1=2,AO=1,

∠A1AO=60°

∴A1O2=AA12+AO2-2AA1?Aocos60°=3

∴AO2+A1O2=A12

∴A1O⊥AO,由于平面AA1C1C

平面ABCD,

所以A1O⊥底面ABCD

∴以OB、OC、OA1所在直线为x轴、y轴、z轴建立如图所示空间直角坐标系,则A(0,-1,0),B(,0,0),C(0,1,0),D(-,0,0),A1(0,0,

……………………2分

(Ⅰ)由于

∴BD⊥AA1……………………4分

  (Ⅱ)由于OB⊥平面AA1C1C

∴平面AA1C1C的法向量

⊥平面AA1D

得到……………………6分

所以二面角D―A1A―C的平面角的余弦值是……………………8分

(Ⅲ)假设在直线CC1上存在点P,使BP//平面DA1C1

……………………9分

得到……………………10分

又因为平面DA1C1

?

即点P在C1C的延长线上且使C1C=CP……………………12分

法二:在A1作A1O⊥AC于点O,由于平面AA1C­1C⊥平面

ABCD,由面面垂直的性质定理知,A1O⊥平面ABCD,

又底面为菱形,所以AC⊥BD

……………………4分

(Ⅱ)在△AA1O中,A1A=2,∠A1AO=60°

∴AO=AA1?cos60°=1

所以O是AC的中点,由于底面ABCD为菱形,所以

O也是BD中点

由(Ⅰ)可知DO⊥平面AA1C

过O作OE⊥AA1于E点,连接OE,则AA1⊥DE

则∠DEO为二面角D―AA1―C的平面角

……………………6分

在菱形ABCD中,AB=2,∠ABC=60°

∴AC=AB=BC=2

∴AO=1,DO=

在Rt△AEO中,OE=OA?sin∠EAO=

DE=

∴cos∠DEO=

∴二面角D―A1A―C的平面角的余弦值是……………………8分

(Ⅲ)存在这样的点P

连接B1C,因为A1B1ABDC

∴四边形A1B1CD为平行四边形。

∴A1D//B1C

在C1C的延长线上取点P,使C1C=CP,连接BP……………………10分

因B­1­BCC1,……………………12分

∴BB1CP

∴四边形BB1CP为平行四边形

则BP//B1C

∴BP//A1D

∴BP//平面DA1C1

20.解:

(Ⅰ)

……………………2分

是增函数

是减函数……………………4分

……………………6分

(Ⅲ)(i)当时,,由(Ⅰ)知上是增函数,在上是减函数

……………………7分

又当时,所以的图象在上有公共点,等价于…………8分

解得…………………9分

(ii)当时,上是增函数,

所以原问题等价于

∴无解………………11分

 

 


同步练习册答案