即a?-1≤1.∴a≤2, 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)在区间[0,3]上的图象如图所示,即k1=f(1)k2=f(2),k3=f(2)-f(1),则k1,k2,k3之间的大小关系为(  )

查看答案和解析>>

“已知:△ABC中,AB=AC,求证:∠B<90°”.下面写出了用反证法证明这个命题过程中的四个推理步骤:
(1)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;
(2)所以∠B<90°;
(3)假设∠B≥90°;
(4)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°
这四个步骤正确的顺序应是(  )

查看答案和解析>>

如图.一个小球从M处投入,通过管道自上而下落到A或B或C.已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C.则分别设为1,2,3等奖.
(1)求投入小球1次获得1等奖的概率;
(2)已知获得1,2,3等奖的折扣率分别为50%,70%,90%.记随机变量ξ为获得k(k=1,2,3)等奖的折扣率.求随机变量ξ的分布列及数学期望Eξ;
(3)若有3人次(投入1球为1人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次.求P(η=2).(即求3次中有二次获得1等奖或2等奖的概率)

查看答案和解析>>

27、对于函数f(x),若f(x0)=x0,则称x0为f(x)的“不动点”;若f[f(x0)]=x0,则称x0为f(x)的“稳定点”.函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f(x)=x},B={x|f[f(x)]=x}.
(1)设函数f(x)=3x+4求集合A和B;
(2)求证:A⊆B;
(3)设函数f(x)=ax2+bx+c(a≠0),且A=∅,求证:B=∅.

查看答案和解析>>

对于函数f(x),若f(x)=x,则称x为f(x)的“不动点”;若f[f(x)]=x,则称x为f(x)的“周期点”,函数f(x)的“不动点”和“周期点”的集合分别记为A和B即A={x|f(x)=x},B={x|f[f(x)=x]}.
(1)求证:A⊆B
(2)若f(x)=ax2-1(a∈R,x∈R),且A=B≠∅,求实数a的取值范围.

查看答案和解析>>

1.D

2.C 提示:画出满足条件A∪B=A∪C的文氏图,可知有五种情况,以观察其中一种,如图,显然只要图中阴影部分相等,B、C未必要相等,条件A∪B=A∪C仍可满足,对照四个选择支,A、B、D均可排除,故选C.

3.D

4.B 提示:由题意知,M,N,因此,),又A∩B,故集合A、B的子集中没有相同的集合,可知M、N中没有其他的公共元素,故正确的答案是M∩N=.

5.A   提示:由,当时,△

,当时,△,且,即

所以

6.A      7.D      8.A

9.D提示:设3x2-4x-32<0的一个必要不充分条件是为Q,P=.由题意知:P能推出Q,但Q不能推出P.也可理解为:PQ.

10.A          11.B

12.D    提示:由,又因为的充分而不必要条件,所以,即。可知A=或方程的两根要在区间[1,2]内,也即以下两种情况:

(1)

(2) ;综合(1)、(2)可得

二、填空题

13.3              14.     w.w.w.k.s.5.u.c.o.m

15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,则-2≤x≤6.        16. ①④


同步练习册答案