1.一个盒子装有六张卡片.上面分别写着如下六个定义域为R的函数:f1(x)=x.f2(x)=x2.f3(x)=x3.f4(x)=sinx.f5(x)=cosx.f6(x)=2. (1)现从盒子中任取两张卡片.将卡片上的函数相加得一个新函数.求所得函数是奇函数的概率, 查看更多

 

题目列表(包括答案和解析)

(本小题满分10分)一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:f1x)=xf2x)=x2f3x)=x3f4x)=sinxf5x)=cosxf6x)=2.

(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;

(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.

 

查看答案和解析>>

(本小题满分10分)一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:

f1x)=xf2x)=x2f3x)=x3f4x)=sinxf5x)=cosxf6x)=2.

   (1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;

   (2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.

查看答案和解析>>

(本小题满分10分)(注意:在试题卷上作答无效)

一个盒子里装有4张大小形状完全相同的卡片,分别标有数2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数3,4,5,6。现从一个盒子中任取一张卡片,其上面的数记为x;再从另一盒子里任取一张卡片,其上面的数记为y,记随机变量,求的分布列和数学期望。

查看答案和解析>>

(2009湖北卷理)(本小题满分10分)

一个盒子里装有4张大小形状完全相同的卡片,分别标有数2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数3,4,5,6。现从一个盒子中任取一张卡片,其上面的数记为x;再从另一盒子里任取一张卡片,其上面的数记为y,记随机变量,求的分布列和数学期望。       

查看答案和解析>>

 (2009湖北卷理)(本小题满分10分)(注意:在试题卷上作答无效)

一个盒子里装有4张大小形状完全相同的卡片,分别标有数2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数3,4,5,6。现从一个盒子中任取一张卡片,其上面的数记为x;再从另一盒子里任取一张卡片,其上面的数记为y,记随机变量,求的分布列和数学期望。            

查看答案和解析>>

一、填空题:

1. ,均有x 2+ x +1≥0  2.第一象限  3.充分而不必要条件  4. 0.01

5. 4   6. 2550   7.    8.①④  9.  R(S1+S2+S3+S4)

10. ,11.   12.1  13.  14.

二、解答题:

15.(Ⅰ)因为各组的频率和等于1,故第四组的频率:

     3′

直方图如右所示        6′

(Ⅱ)依题意,60及以上的分数所在的第三、四、五、六组,频率和为 所以,抽样学生成绩的合格率是%..       9 ′

利用组中值估算抽样学生的平均分

=71

估计这次考试的平均分是71分                                            12′      

16.(1)证明:连结BD.

在长方体中,对角线.

E、F为棱AD、AB的中点,

 .

 .                           

B1D1平面平面

  EF∥平面CB1D1.                       6′

(2) 在长方体中,AA1⊥平面A1B1C1D1,而B1D1平面A1B1C1D1

 AA1B1D1.

在正方形A1B1C1D1中,A1C1B1D1

 B1D1⊥平面CAA1C1.                 

B1D1平面CB1D1

*平面CAA1C1⊥平面CB1D1.                    13′

17. (1)由                  4′

       由正弦定理得

             

                                       6′

                    8′

 (2)

     =                                  10′

 =                                          12′

  由(1)得

                            15′

18.(1)设C:+=1(a>b>0),设c>0,c2=a2-b2,由条件知a-c=,=,

∴a=1,b=c=,

故C的方程为:y2+=1                   5′

(2)由=λ,

∴λ+1=4,λ=3 或O点与P点重合=              7′

当O点与P点重合=时,m=0

当λ=3时,直线l与y轴相交,则斜率存在。

设l与椭圆C交点为A(x1,y1),B(x2,y2

得(k2+2)x2+2kmx+(m2-1)=0

Δ=(2km2-4(k2+2)(m2-1)=4(k22m2+2)>0 (*)

x1+x2=, x1x2=                           11′

∵=3 ∴-x1=3x2

消去x2,得3(x1+x22+4x1x2=0,∴3()2+4=0

 

整理得4k2m22m2-k2-2=0                          13′

m2=时,上式不成立;m2≠时,k2=,

因λ=3 ∴k≠0 ∴k2=>0,∴-1<m<- 或 <m<1

容易验证k2>2m2-2成立,所以(*)成立

即所求m的取值范围为(-1,-)∪(,1)∪{0}                 16′

19. ⑴由题意得                  4′

(n≥2),

又∵

数列是以为首项,以2为公比的等比数列。        8′

[则)]

⑵由

,                                   11′

          13′

 

                                               16′

20. (1)设

                ∴     ∴

           由

           又∵    ∴    

                               6′ 

           于是

;   由

           故函数的单调递增区间为

单调减区间为                              10′

(2)证明:据题意x1<x2<x3,

由(1)知f (x1)>f (x2)>f (x3),

          14′

即ㄓ是钝角三角形.                                            18′

 

 

 

 

第Ⅱ部分  加试内容

一.必答题:

1.(1)记事件A为“任取两张卡片,将卡片上的函数相加得到的函数是奇函数”,由题意知                       4′

   (2)ξ可取1,2,3,4.

   

    ;    8′

    故ξ的分布列为

ξ

1

2

3

4

P

                                                             

   

答:ξ的数学期望为                                      10′

2.(1)由

求得                               3′

(2)猜想                                     5′

证明:①当n=1时,猜想成立。                            6′

②设当n=k时时,猜想成立,即,      7′

则当n=k+1时,有

所以当n=k+1时猜想也成立                                9′

③综合①②,猜想对任何都成立。                  10′

二、选答题:

3.(1)∵DE2=EF?EC,

          ∴DE : CE=EF: ED.

          ∵ÐDEF是公共角,

          ∴ΔDEF∽ΔCED.  ∴ÐEDF=ÐC.

          ∵CD∥AP,    ∴ÐC=Ð P.

          ∴ÐP=ÐEDF.----5′

(2)∵ÐP=ÐEDF,    ÐDEF=ÐPEA,

     ∴ΔDEF∽ΔPEA. ∴DE : PE=EF : EA.即EF?EP=DE?EA.

∵弦AD、BC相交于点E,∴DE?EA=CE?EB.∴CE?EB=EF?EP.   10′

4.(矩阵与变换)

解:.

,                                                5′

椭圆的作用下的新曲线的方程为         10′

5.(1)直线的参数方程为,即.         5′

   (2)把直线代入


则点两点的距离之积为.                   10′

6.

        7′

当且仅当  且

 F有最小值                                         10′

 

 


同步练习册答案