(1)若a=1,m=1,求公差d, 查看更多

 

题目列表(包括答案和解析)

已知是公差为d的等差数列,是公比为q的等比数列

(Ⅰ)若 ,是否存在,有?请说明理由;

(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;

(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.

【解析】第一问中,由,整理后,可得为整数不存在,使等式成立。

(2)中当时,则

,其中是大于等于的整数

反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)中设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

结合二项式定理得到结论。

解(1)由,整理后,可得为整数不存在,使等式成立。

(2)当时,则,其中是大于等于的整数反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

   由,得

为奇数时,此时,一定有使上式一定成立。为奇数时,命题都成立

 

查看答案和解析>>

 已知是公差为d的等差数列,是公比为q的等比数列

(1)若 ,是否存在,有?请说明理由;

(2)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;

(3)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.

查看答案和解析>>

已知{an}是公差为d的等差数列,{bn}是公比为q的等比数列
(1)若an=3n+1,是否存在m,n∈N*,有am+am+1=ak?请说明理由;
(2)若bn=aqn(a、q为常数,且aq≠0)对任意m存在k,有bm•bm+1=bk,试求a、q满足的充要条件;
(3)若an=2n+1,bn=3n试确定所有的p,使数列{bn}中存在某个连续p项的和式数列中{an}的一项,请证明.

查看答案和解析>>

已知{an}是公差为d的等差数列,{bn}是公比为q的等比数列,设m,n,p,k都是正整数.
(1)求证:若m+n=2p,则am+an=2ap,bmbn=(bp2
(2)若an=3n+1,是否存在m,k,使得am+am+1=ak?请说明理由;
(3)求使命题P:“若bn=aqn(a、q为常数,且aq≠0)对任意m,都存在k,有bmbm+1=bk”成立的充要条件.

查看答案和解析>>

已知{an}是公差为d的等差数列,{bn}是公比为q的等比数列,设m,n,p,k都是正整数.
(1)求证:若m+n=2p,则am+an=2ap,bmbn=(bp2
(2)若an=3n+1,是否存在m,k,使得am+am+1=ak?请说明理由;
(3)求使命题P:“若bn=aqn(a、q为常数,且aq≠0)对任意m,都存在k,有bmbm+1=bk”成立的充要条件.

查看答案和解析>>

1.1   2.    3.    4.-8    5.   6.20         7.

8.1   9.0     10.    11.   12.     13.   14.(1005,1004)

15.⑴ ∵ ,……………………………… 2分

又∵ ,∴ 为斜三角形,

,∴.   ……………………………………………………………… 4分

,∴ .  …………………………………………………… 6分

⑵∵,∴ …12分

,∵,∴.…………………………………14分

16.⑴∵平面平面,所以,…2分

是菱形,∴,又

平面,……………………………………………………4分

又∵平面,∴平面平面.  ……………………………………6分

⑵取中点,连接,则

是菱形,∴

的中点,∴,………………10分

∴四边形是平行四边形,∴,………………12分

又∵平面平面

平面.     ………………………………………………………………14分

17.(1)∵直线过点,且与圆相切,

设直线的方程为,即, …………………………2分

则圆心到直线的距离为,解得

∴直线的方程为,即. …… …………………4分

(2)对于圆方程,令,得,即.又直线过点且与轴垂直,∴直线方程为,设,则直线方程为

解方程组,得同理可得,……………… 10分

∴以为直径的圆的方程为

,∴整理得,……………………… 12分

若圆经过定点,只需令,从而有,解得

∴圆总经过定点坐标为. …………………………………………… 14分

18.⑴因为当时,,所以, ……4分

   ………………………………………………………6分

⑵设每小时通过的车辆为,则.即 ……12分

,…………………………………………………14分

,当且仅当,即时,取最大值

答:当时,大桥每小时通过的车辆最多.………16分

19.(1)由,得

∴b、c所满足的关系式为.……………………2分

(2)由,可得

方程,即,可化为

,则由题意可得,上有唯一解,…4分

,由,可得

时,由,可知是增函数;

时,由,可知是减函数.故当时,取极大值.………6分

由函数的图象可知,当时,方程有且仅有一个正实数解.

故所求的取值范围是.  ……………………………………………8分

(3)由,可得.由.…10分

时, ;当时,

时(),;当时,

时,. ………………………16分

注:可直接通过研究函数的图象来解决问题.

20.(1)由,且等差数列的公差为,可知

若插入的一个数在之间,则

消去可得,其正根为. ………………………………2分

若插入的一个数在之间,则

消去可得,此方程无正根.故所求公差.………4分

(2)设在之间插入个数,在之间插入个数,则,在等比数列中,

…,

   ………………8分

又∵都为奇数,∴可以为正数,也可以为负数.

①若为正数,则,所插入个数的积为

②若为负数,中共有个负数,

是奇数,即N*)时,所插入个数的积为

是偶数,即N*)时,所插入个数的积为

综上所述,当N*)时,所插入个数的积为

N*)时,所插入个数的积为.…………10分

注:可先将表示,然后再利用条件消去进行求解.

(3)∵在等比数列,由,可得,同理可得

,即, …………………………12分

假设是有理数,若为整数,∵是正数,且,∴

中,∵的倍数,故1也是的倍数,矛盾.

不是整数,可设(其中为互素的整数,),

则有,即

,可得,∴是x的倍数,即是x的倍数,矛盾.

是无理数.……………………………………16分

 

 

 


同步练习册答案