∴当时..故在上是减函数. 查看更多

 

题目列表(包括答案和解析)

已知函数.

(Ⅰ)若函数依次在处取到极值.求的取值范围;

(Ⅱ)若存在实数,使对任意的,不等式 恒成立.求正整数的最大值.

【解析】第一问中利用导数在在处取到极值点可知导数为零可以解得方程有三个不同的实数根来分析求解。

第二问中,利用存在实数,使对任意的,不等式 恒成立转化为,恒成立,分离参数法求解得到范围。

解:(1)

(2)不等式 ,即,即.

转化为存在实数,使对任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

,则.

,则,因为,有.

在区间上是减函数。又

故存在,使得.

时,有,当时,有.

从而在区间上递增,在区间上递减.

[来源:]

所以当时,恒有;当时,恒有

故使命题成立的正整数m的最大值为5

 

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)设,若对任意,不等式 恒成立,求实数的取值范围.

【解析】第一问利用的定义域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是

第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。

解: (I)的定义域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是     ........4分

(II)若对任意不等式恒成立,

问题等价于,                   .........5分

由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,

故也是最小值点,所以;            ............6分

当b<1时,

时,

当b>2时,;             ............8分

问题等价于 ........11分

解得b<1 或 或    即,所以实数b的取值范围是 

 

查看答案和解析>>

某省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻(时) 的关系为,其中是与气象有关的参数,且

(1)令, ,写出该函数的单调区间,并选择其中一种情形进行证明;

(2)若用每天的最大值作为当天的综合放射性污染指数,并记作,求

(3)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?

【解析】第一问利用定义法求证单调性,并判定结论。

第二问(2)由函数的单调性知

,即t的取值范围是. 

时,记

 

上单调递减,在上单调递增,

第三问因为当且仅当时,.

故当时不超标,当时超标.

 

查看答案和解析>>

已知,函数

(1)当时,求函数在点(1,)的切线方程;

(2)求函数在[-1,1]的极值;

(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。

【解析】本试题中导数在研究函数中的运用。(1)中,那么当时,  又    所以函数在点(1,)的切线方程为;(2)中令   有 

对a分类讨论,和得到极值。(3)中,设,依题意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  当时,  又    

∴  函数在点(1,)的切线方程为 --------4分

(Ⅱ)令   有 

①         当

(-1,0)

0

(0,

,1)

+

0

0

+

极大值

极小值

的极大值是,极小值是

②         当时,在(-1,0)上递增,在(0,1)上递减,则的极大值为,无极小值。 

综上所述   时,极大值为,无极小值

时  极大值是,极小值是        ----------8分

(Ⅲ)设

求导,得

    

在区间上为增函数,则

依题意,只需,即 

解得  (舍去)

则正实数的取值范围是(

 

查看答案和解析>>


同步练习册答案