观察下列等式: 查看更多

 

题目列表(包括答案和解析)

2、观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为
13+23+33+43+53+63=212

查看答案和解析>>

3、观察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=
(1+2+3+4)2,…,根据上述规律,第四个等式为
13+23+33+43+53=(1+2+3+4+5)2(或152

查看答案和解析>>

观察下列等式:
2
1
+2=4;
2
1
×2=4;
3
2
+3=
9
2
3
2
×3=
9
2
4
3
+4=
16
3
4
3
×4=
16
3
;…,根据这些等式反映的结果,可以得出一个关于自然数n的等式,这个等式可以表示为
 

查看答案和解析>>

观察下列等式:
n
i=1
i=
1
2
n2+
1
2
n

n
i=1
i2=
1
3
n3+
1
2
n2+
1
6
n

n
i=1
i3=
1
4
n4+
1
2
n3+
1
4
n2

n
i=1
i4=
1
5
n5+
1
2
n4+
1
3
n3-
1
30
n

n
i=1
i5=
1
6
n6+
1
2
n5+
5
12
n4-
1
12
n2

n
i=1
i6=
1
7
n7+
1
2
n6+
1
2
n5-
1
6
n3+
1
42
n


n
i=1
ik=ak+1nk+2+aknk+ak-1nk-1+ak-2nk-2+…+a1n+a0

可以推测,当k≥2(k∈N*)时,ak+1=
1
k+1
ak=
1
2
ak-1
=
 
ak-2=
 

查看答案和解析>>

50、观察下列等式:C51+C55=23-2,C91+C95+C99=27+23,C131+C135+C139+C1313=211-25,C171+C175+C179+C1713+C1717=215+27

由以上等式推测到一个一般的结论:
对于n∈N*,C4n+11+C4n+15+C4n+19+…+C4n+14n+1=
24n-1+(-1)n22n-1

查看答案和解析>>

一、1―5DCDDD       6―10CBADC   11―12DA

20080428

三、17、解:

(1)

      

       ∵相邻两对称轴的距离为

        

   (2)

      

       又

       若对任意,恒有

       解得

18、(理)解  用A,B,C分别表示事件甲、乙、丙面试合格.由题意知A,B,C相互独立,且P(A)=P(B)=P(C)=.

(Ⅰ)至少有1人面试合格的概率是

(Ⅱ)的可能取值为0,1,2,3.

     

              =

              =

     

              =

              =

     

     

所以, 的分布列是

0

1

2

3

P

的期望

(文)解  基本事件共有6×6=36个.  (Ⅰ) 是5的倍数包含以下基本事件: (1, 4) (4, 1) (2, 3) (3, 2)  (4, 6) (6, 4) (5, 5)共7个.所以,是5的倍数的概率是 .

(Ⅱ)是3的倍数包含的基本事件(如图)

共20个,所以,是3的倍数的概率是.

(Ⅲ)此事件的对立事件是都不是5或6,其基本事件有个,所以,中至少有一个5或6的概率是.

19、证明:(1)∵

                                         

(2)令中点为中点为,连结

     ∵的中位线

              

又∵

    

     ∴

     ∵为正

       

     ∴

     又∵

 ∴四边形为平行四边形   

  

20、解:(1)由,得:

            

     (2)由             ①

          得         ②

      由②―①,得  

       即:

     

      由于数列各项均为正数,

         即 

      数列是首项为,公差为的等差数列,

      数列的通项公式是  

    (3)由,得:

      

        

        

21、解(1)由题意的中垂线方程分别为

于是圆心坐标为

=,即   所以

于是 ,所以  即

(2)假设相切, 则

这与矛盾.

故直线不能与圆相切.

22、(理)

(文)(1)f ′(x)=3x2+2a x+b=0.由题设,x=1,x=-为f ′(x)=0的解.-a=1-,=1×(-).∴a=-,b=-2.经检验得:这时都是极值点.(2)f (x)=x3-x2-2 x+c,由f (-1)=-1-+2+c=,c=1.∴f (x)=x3-x2-2 x+1.

x

(-∞,-)

(-,1)

(1,+∞)

f ′(x)

∴  f (x)的递增区间为(-∞,-),及(1,+∞),递减区间为(-,1).当x=-时,f (x)有极大值,f (-)=;当x=1时,f (x)有极小值,f (1)=-.(3)由(1)得,f ′(x)=(x-1)(3x+2),f (x)=x3-x2-2 x+c, f (x)在[-1,-及(1,2]上递增,在(-,1)递减.而f (-)=--++c=c+.f (2)=8-2-4+c=c+2.∴  f (x)在[-1,2]上的最大值为c+2.

∴  ∴  ∴   或∴ 

 

 

 


同步练习册答案