B.过程①是衰变.过程③是衰变,过程②是衰变.过程④是衰变 查看更多

 

题目列表(包括答案和解析)

U放射性衰变有多种途径,其中一种途径是先衰变成Bi,而Bi可以经一次衰变变成X(X代表某种元素),也可以经一次衰变变成Ti,X和Ti最后都衰变变成Pb,衰变路径如图所示,则可知图中

[  ]
A.

过程①是β衰变,过程③是α衰变;过程②是α衰变,过程④是β衰变

B.

过程①是β衰变,过程③是α衰变;过程②是β衰变,过程④是α衰变

C.

过程①是α衰变,过程③是β衰变;过程②是α衰变,过程④是β衰变

D.

过程①是α衰变,过程③是β衰变;过程②是β衰变,过程④是α衰变

查看答案和解析>>

原子核发生β衰变有三种情况:一种是放出负电子;另一种是发射正电子,只在人工放射物中出现;第三种衰变是:原子核俘获一个核外K电子,简称K俘获.在K俘获过程中,需要放出K电子的结合能.关于K俘获过程,下列认识正确的是(  )
A、原子序数不变B、原子序数减小C、原子总质量不变D、原子总质量减小

查看答案和解析>>

(1)关于核衰变和核反应的类型,下列表述正确的有
AC
AC

A.
 
238
92
U→
 
234
90
Th+
 
4
2
He
是α衰变     B.
 
14
7
N+
 
4
2
He→
 
17
8
O+
 
1
1
H
是β衰变
C.
 
2
1
H+
 
3
1
H→
 
4
2
He+
 
1
0
n
是轻核聚变   D.
 
82
34
Se→
 
82
36
Kr+2
 
0
-1
e
是重核裂变
(2)如图所示,光滑水平面上,轻弹簧两端分别拴住质量均为m的小物块A和B,B物块靠着竖直墙壁.今用水平外力缓慢推A,使A、B间弹簧压缩,当压缩到弹簧的弹性势能为E时撤去此水平外力,让A和B在水平面上运动.求:
①当B离开墙壁时,A物块的速度大小;
②当弹簧达到最大长度时A、B的速度大小;
③当B离开墙壁以后的运动过程中,弹簧弹性势能的最大值.

查看答案和解析>>

静止的镭核Ra发生衰变,释放出的粒子的动能为.假定衰变时能量全部以动能形式释放出去,则衰变过程中总的质量亏损是

[  ]

A.
B.
C.
D.

查看答案和解析>>

放射性元素氡()经α衰变成为钋,半衰期为3.8天;但勘测表明,经过漫长的地质年代后,目前地壳中仍存在天然的含有放射性元素的矿石,其原因是(   )

A.目前地壳中的主要来自于其它放射元素的衰变

B.在地球形成的初期,地壳中元素的含量足够高

C.当衰变产物积累到一定量以后,的增加会减慢的衰变进程

D.主要存在于地球深处的矿石中,温度和压力改变了它的半衰期

 

查看答案和解析>>

一、1、AB 2、AD3、A 4、C5、D 6、C 7、C 8、AC

 

二、实验题:(18分)将答案填在题目的空白处,或者要画图连线。

9、(6分)(1)0。48;0。40(2)②(3)mgs;(4)①;(5)增加的动能;摩擦、定滑轮转动。[只要言之有理就给分。比如,若回答减少的重力势能可能偏小,原因是数字计时读出遮光条通过光电门的时间t偏小而造成的](除5以外各步是1分(5)是2分)

10、(12分)①C              (3分)

   ②电路如图所示。(5分)

   ③,(2分)为电压表读数,为电压表内阻。(2分)

三、本大题共三小题共计54分.解答时请写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题.答案中必须明确写出数值和单位

11、(16分)受力分析如图,据牛顿第二定律有

       ①

减速上升250m与加速下降250m互逆

 据题意      ②

               ③

代入数据可得 

         ④

   ⑤

 设计师应设计发射速度

 同时数码点火控制时间应设定

评分参考:①②③式分别得4分,④④式分别得2分

12、(18分)(1)在圆形磁场中做匀速圆周运动,

洛仑兹力提供向心力  ………………………………      2分

         ………………………………………………………   1分

(2)根据题意粒子恰好不能从O3射出的条件为 …………  2分

PQ其匀速运动时,   …………………………………    2分

由③④得    ……………………………………………   1分

(3)导体棒匀速运动时,速度大小为   …………  1分

代入③中得:    ……………………………………………  1分

由能量守恒:

解得 ……………………………………      2分

(4)在圆形磁场内的运动时间为t1   

……………………………………………      2分

在电场中往返运动的时间为t2

  ………………………………………………………      2分

  ………………………………………………………………   1分

       故……………………………………   1分

13、(20分)(1)粒子进入电容器,其加速度a=……………①  (1分)

假设能在时间以内穿过电容器,则有at2=D……………② (1分)

由以上两式并代入数据得:t=s……………………………………(3分)

t<符合假设,故粒子经7.1×10-6s到达磁场。……………………………(1分)

(2)设粒子到达磁场时的速率为v

 由动能定理得:qU=……………③  (2分)

 粒子进入磁场在洛仑兹力作用下做匀速圆周运动,其半径为R,有

 qvB=……………④  (2分)

 粒子运动轨迹如图,由几何知识有:

(R-L)2+d2=R2……………⑤  (2分)

根据③④⑤式得粒子向上偏移的距离

  L=m=4.1×103m…………⑥ (1分)

(3)如果粒子在磁场中的轨迹恰好与右边界相切,则半径R0=d,对应速度为v0

   设在电场中先加速位移x,后减速位移D-x

由动能定理: …………⑦ (2分)

加速位移x需要时间为t,x=…………⑧ (2分)

由④⑥⑦⑧得 t=s …………⑨ (2分)

故需在0―(-t)内进入电容器,即在0―3.9×10-7s进入。…………(1分)

 

 

 

 


同步练习册答案