得则所求椭圆方程为. 查看更多

 

题目列表(包括答案和解析)

如图,分别是椭圆+=1()的左、右焦点,是椭圆的顶点,是直线与椭圆的另一个交点,=60°.

(Ⅰ)求椭圆的离心率;

(Ⅱ)已知△的面积为40,求的值.

【解析】 (Ⅰ)由题=60°,则,即椭圆的离心率为

(Ⅱ)因△的面积为40,设,又面积公式,又直线

又由(Ⅰ)知,联立方程可得,整理得,解得,所以,解得

 

查看答案和解析>>

已知以坐标原点为中心的椭圆,满足条件

(1)焦点F1的坐标为(3,0);

(2)长半轴长为5.

则可求得此椭圆方程为=1(※)

问可用其他什么条件代替条件(2),使所求得的椭圆方程仍为(※)?请写出两种替代条件,并说明理由.

查看答案和解析>>

已知以坐标原点为中心的椭圆,满足条件:

(1)焦点F1的坐标为(3,0);

(2)长半轴长为5.

则可求得此椭圆方程为=1(※),问可用其他什么条件代替条件(2),使所求得的椭圆方程仍为(※)?请写出两种替代条件,并说明理由.

查看答案和解析>>

已知以坐标原点为中心的椭圆,满足条件:

(1)焦点F1的坐标为(3,0);

(2)长半轴长为5.

则可求得此椭圆方程为(※),问可用其他什么条件代替条件(2),使所求得的椭圆方程仍为(※)?请写出两种替代条件,并说明理由.

查看答案和解析>>

现有变换公式T:可把平面直角坐标系上的一点P(x,y)变换到这一平面上的一点P′(x′,y′).
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为,长轴顶点和短轴顶点间的距离为2.求该椭圆C的标准方程,并求出其两个焦点F1、F2经变换公式T变换后得到的点F1和F2的坐标;
(2)若曲线M上一点P经变换公式T变换后得到的点P'与点P重合,则称点P是曲线M在变换T下的不动点.求(1)中的椭圆C在变换T下的所有不动点的坐标;
(3)在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换T下的不动点的存在情况和个数.

查看答案和解析>>


同步练习册答案