如图.矩形ABCD中.AB=.BC=.椭圆M的中心和准线分别是已知矩形的中心和一组对边所在直线.矩形的另一组对边间的距离为椭圆的短轴长.椭圆M的离心率大于0.7. 查看更多

 

题目列表(包括答案和解析)

如图,矩形ABCD中,AB=,BC=2,椭圆M的中心和准线分别是已知矩形的中心和一组对边所在直线,矩形的另一组对边间的距离为椭圆的短轴长,椭圆M的离心率大于0.7.
(I)建立适当的平面直角坐标系,求椭圆M的方程;
(II)过椭圆M的中心作直线l与椭圆交于P,Q两点,设椭圆的右焦点为F2,当时,求△PF2Q的面积.

查看答案和解析>>

如图,矩形ABCD中,|AB|2|BC|2EFGH分别矩形四条边的中点,分别以HFEG所在直线为x轴,y轴建立平面直角坐标系,已知λλ,其中0λ1

1)求证:直线ERGR′的交点M在椭圆Γy21上;

2N直线lyx2上且不在坐标轴上的任意一点,F1F2分别为椭圆Γ的左、右焦点直线NF1NF2与椭圆Γ的交点分别为PQST是否存在点N,使直线OPOQOSOT的斜率kOPkOQkOSkOT满足kOPkOQkOSkOT0?若存在,求出点N的坐标;若不存在,说明理由

 

查看答案和解析>>

如图,矩形ABCD中,|AB|=4,|BC|=2,E,F,M,N分别是矩形四条边的中点,G,H分别是线段ON,CN的中点.
(1)证明:直线EG与FH的交点L在椭圆W:上;
(2)设直线l:与椭圆W:有两个不同的交点P,Q,直线l与矩形ABCD有两个不同的交点S,T,求的最大值及取得最大值时m的值.

查看答案和解析>>

如图,矩形ABCD中,|AB|=4,|BC|=2,E,F,M,N分别是矩形四条边的中点,G,H分别是线段ON,CN的中点.
(1)证明:直线EG与FH的交点L在椭圆W:上;
(2)设直线l:与椭圆W:有两个不同的交点P,Q,直线l与矩形ABCD有两个不同的交点S,T,求的最大值及取得最大值时m的值.

查看答案和解析>>

如图,矩形ABCD中,|AB|=2,|BC|=2.E,F,G,H分别是矩形四条边的中点,分别以HF,EG所在的直线为x轴,y轴建立平面直角坐标系,已知=λ=λ,其中0<λ<1.

(1)求证:直线ER与GR′的交点M在椭圆Γ:+y2=1上;
(2)若点N是直线l:y=x+2上且不在坐标轴上的任意一点,F1、F2分别为椭圆Γ的左、右焦点,直线NF1和NF2与椭圆Γ的交点分别为P、Q和S、T.是否存在点N,使得直线OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT满足kOP+kOQ+kOS+kOT=0?若存在,求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

一、选择题(本大题共8小题,每小题5,40.

题号

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

答案

D

B

A

 C

D

C

B

C

 

二、填空题(本大题共6小题,每小题5分.有两空的小题,第一空3分,第二空2分,共30分)

(9)    (10)     (11)   

(12)       (13)     (14)4,8

三、解答题(本大题共6小题,80.

(15)      (共12 分)

解:(I)

= ?

                                     2分

                                                 4分

= .                                                     5分

                               6分              

函数的最大值为.                                             7分

当且仅当Z)时,函数取得最大值为.

(II)由Z),                          9分

  (Z).                                   11分

函数的单调递增区间为[](Z).                     12分                                                                                  

(16) (共14分)

解法一:(I)证明:连结A1D,在正方体AC1中, ∵A1B1^平面A1ADD1,

\ A1D是PD在平面A1ADD内的射影.                                  2分

         在正方形A1ADD1中, A1D^ AD1, \ PDAD1.                           4分

 解(II)  取中点,连结,则//.                              

平面,∴平面.

在平面内的射影.

为CP与平面D1DCC1所成的角.                       7分

中,               

与平面D1DCC1所成的角的正弦值为.       9分                                       

(III)在正方体AC1中,.

平面内,

∥平面.

∴点到平面的距离与点C1到平面的距离相等.

平面

∴平面平面.

又平面平面

C1C1H于H,则C1H平面.

C1的长为点C1到平面的距离.                                          12分

 连结C1 ,并在上取点,使//.

中,,得.

∴点到平面的距离为.                                                14分

  解法二:如图,以D为坐标原点,建立空间直角坐标系.

        由题设知正方体棱长为4,则

.                             1分

      (I)设,.                          3分

           .                             4分

      (II)由题设可得,  , 故.

是平面

的法向量.                      7分

  .          8分                                                               

与平面D1DCC1所成角的正弦值为.                                    9分

(III),设平面D1DP的法向量

.

,即,则

.                                                              12分

C到平面D1DP的距离为.                                   14分

(17)(共13分)

解(I)设事件“某人参加A种竞猜活动只获得一个福娃奖品”为事件M,            1分

依题意,答对一题的概率为,则

P(M)=                                                   3分

=.                                                4分

(II)依题意,某人参加B种竞猜活动,结束时答题数=1,2,…,6,                5分

.                                       11分

所以,的分布列是

1

2

3

4

5

6

P

 

 

 

                 

      设

      ∴,

      ∴ E==.                       13分 

     答:某人参加A种竞猜活动只获得一个福娃奖品的概率为;某人参加B种竞猜活动,结束时答题数为E.

(18)(本小题共13分)

解;如图,建立直角坐标系,依题意:设椭圆方

   程为(a>b>0),         1分

(I)依题意:   4分                                             

椭圆M的离心率大于0.7,所以.

椭圆方程为.                                             6分

(II)因为直线l过原点与椭圆交于点,设椭圆M的左焦点为.

由对称性可知,四边形是平行四边形.

的面积等于的面积.                                   8分


同步练习册答案