例2.若都是各项为正的数列.对任意的正整数都有成等差数列.成等比数列. 查看更多

 

题目列表(包括答案和解析)

(Ⅰ)设a1,a2,…an是各项均不为零的n(n≥4)项等差数列,且公差d≠0。若将此数列删去某一项后得到的数列(按原来的顺序)是等比数列.
(ⅰ)当n=4时,求的数值;
(ⅱ)求n的所有可能值.
(Ⅱ)求证:对于给定的正整数n(n≥4),存在一个各项及公差均不为零的等差数列b1,b2,…,bn,其中任意三项(按原来顺序)都不能组成等比数列.

查看答案和解析>>

已知3,5,21是各项均为整数的无穷等差数列{an}的三项,若数列{an}的首项为a1,公差为d,给出关于数列{an}的4个命题:1满足条件的d有8个不同的取值;2存在满足条件的数列{an},使得对任意的n∈N*,都有S2n=4Sn成立;3对任意满足条件的d,存在a1,使得99一定是数列{an}中的一项;4对任意满足条件的d,存在a1,使得30一定是数列{an}中的一项;则其中所有正确命题的序号是
 

查看答案和解析>>

设{an},{bn}都是各项为正数的数列,对任意的正整数n,都有an,bn2,an+1成等差数列,bn2,an+1,bn+12成等比数列.
(1)证明数列{bn}是等差数列;
(2)如果a1=1,b1=2,记数列{
1an
}
的前n项和为Sn,问是否存在常数λ,使得bn>λSn对任意n∈N*都成立?若存在,求出λ的取值范围;若不存在,请说明理由.

查看答案和解析>>

已知3,5,21是各项均为整数的无穷等差数列{an}的三项,若数列{an}的首项为a1,公差为d,给出关于数列{an}的4个命题:1满足条件的d有8个不同的取值;2存在满足条件的数列{an},使得对任意的n∈N*,都有S2n=4Sn成立;3对任意满足条件的d,存在a1,使得99一定是数列{an}中的一项;4对任意满足条件的d,存在a1,使得30一定是数列{an}中的一项;则其中所有正确命题的序号是   

查看答案和解析>>

设{an},{bn}都是各项为正数的数列,对任意的正整数n,都有an,bn2,an+1成等差数列,bn2,an+1,bn+12成等比数列.
(1)证明数列{bn}是等差数列;
(2)如果a1=1,b1=2,记数列的前n项和为Sn,问是否存在常数λ,使得bn>λSn对任意n∈N*都成立?若存在,求出λ的取值范围;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案