则 . .答案:7.3 查看更多

 

题目列表(包括答案和解析)

【答案】π

【考点】扇形面积的计算;三角形内角和定理.

【分析】根据三角形内角和定理得到∠B+∠C=180°-∠A=130°,利用半径相等得到OB=OD,OC=OE,则∠B=∠ODB,∠C=∠OEC,再根据三角形内角和定理得到∠BOD=180°-2∠B,∠COE=180°-2∠C,则∠BOD+∠COE=360°-2(∠B+∠C)=360°-2×130°=100°,图中阴影部分由两个扇形组成,它们的圆心角的和为100°,半径为3,然后根据扇形的面积公式计算即可.

【解答】∵∠A=50°,

∴∠B+∠C=180°-∠A=130°,

而OB=OD,OC=OE,

∴∠B=∠ODB,∠C=∠OEC,

∴∠BOD=180°-2∠B,∠COE=180°-2∠C,

∴∠BOD+∠COE=360°-2(∠B+∠C)

=360°-2×130°=100°,

而OB=BC=3,

∴S阴影部分π

故答案为π

【点评】本题考查了扇形面积的计算:扇形的面积=n为圆心角的度数,R为半径).也考查了三角形内角和定理.

查看答案和解析>>

已知:,则等于

[  ]

A.

B.

C.

D.以上答案都不能

查看答案和解析>>

如图①:要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?
分析:由横、竖彩条的宽度比为2:3,可设每个横彩条的宽为2x,则每个竖彩条的宽为3x.为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD.
结合以上分析完成填空:
如图②:用含x的代数式表示:AB=
 
cm;AD=
 
cm;矩形ABCD的面积为
 
cm2;列出方程并完成本题解答.
精英家教网

查看答案和解析>>

如图①,要设计一幅宽20cm,长60cm的长方形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为4:3,如果要使所有彩条所占面积为原长方形图案面积的三分之一,应如何设计每个彩条的宽度?
分析:由横、竖彩条的宽度比为4:3,可设每个横彩条的宽为4x,则每个竖彩条的宽为3x.为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到长方形ABCD.
(1)结合以上分析完成填空:如图②,用含x的代数式表示:AB=
 
cm;AD精英家教网=
 
cm;长方形ABCD的面积为
 
cm2
(2)列出方程并完成本题解答.

查看答案和解析>>

如图,某中学校园有一块长为35m,宽为16m的长方形空地,其中有一面已经铺设长为26m的篱笆围墙,学校设计在这片空地上,利用这面围墙和用尽已有的可制作50m长的篱笆材料,围成一个矩形花园或围成一个半圆花园,请回答以下问题:
(1)能否围成面积为300m2的矩形花园?若能,请写出其中一种设计方案,若不能,请说明理由.
(2)若围成一个半圆花园,则该如何设计?请写出你的设计方案.(π取3.14)
(3)围成的各种设计中,最大面积是多少?

查看答案和解析>>


同步练习册答案