∴AOE≌AOB.得OE=OB .即EC=FB.而BCFE为菱形.则BCFE是正方形. -----10分 查看更多

 

题目列表(包括答案和解析)

精英家教网在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如图所示).则△AOB得重心G(即三角形三条中线的交点)的轨迹方程为
 

查看答案和解析>>

如图,A、B是一矩形OEFG边界上不同的两点,且∠AOB=45°,OE=1,EF=
3
,设∠AOE=α.
(1)写出△AOB的面积关于α的函数关系式f(α);
(2)写出函数f(α)的取值范围.

查看答案和解析>>

在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如图所示).则△AOB得重心G(即三角形三条中线的交点)的轨迹方程为    

查看答案和解析>>

在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如图所示).则△AOB得重心G(即三角形三条中线的交点)的轨迹方程为 ________;

查看答案和解析>>

如图所示,三棱柱OAB-O1A1B1中,平面OBB1O1⊥平面OAB,∠O1OB=60°,∠AOB=90°,且OB=OO1=2,OA=
3
,求异面直线A1B与AO1所成角的余弦值的大小.

查看答案和解析>>


同步练习册答案