(3) 2R= ------12分 查看更多

 

题目列表(包括答案和解析)

已知正项数列的前n项和满足:

(1)求数列的通项和前n项和

(2)求数列的前n项和

(3)证明:不等式  对任意的都成立.

【解析】第一问中,由于所以

两式作差,然后得到

从而得到结论

第二问中,利用裂项求和的思想得到结论。

第三问中,

       

结合放缩法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正项数列,∴           ∴ 

又n=1时,

   ∴数列是以1为首项,2为公差的等差数列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        

   ∴不等式  对任意的都成立.

 

查看答案和解析>>

12分)设函数f(x)=2x3-3(a+1)x2+6ax+8,a∈R,
(1)若f(x)在x=3处取得极值,求实数a的值;
(2)在(1)的条件下,求函数f(x)的单调区间.

查看答案和解析>>

(2012•宝鸡模拟)某休闲会馆拟举行“五一”庆祝活动,每位来宾交30元的入场费,可参加一次抽奖活动.抽奖活动规则是:从一个装有分值分别为1,2,3,4,5,6的六个相同小球的抽奖箱中,有放回的抽取两次,每次抽取一个球,规定:若抽得两球的分值之和为12分,则获得价值为m元的礼品;若抽得两球的分值之和为11分或10分,则获得价值为100元的礼品;若抽得两球的分值之和低于10分,则不获奖.
(1)求每位会员获奖的概率;
(2)假设这次活动会馆既不赔钱也不赚钱,则m应为多少元?

查看答案和解析>>

北京时间2011年3月11日13时46分,在日本东海岸附近海域发生里氏9级地震后引发海啸,导致福岛第一核电站受损严重.3月12日以来,福岛第一核电站的4台机组(编号分别为1、2、3、4)的核反应堆相继发生爆炸,放射性物质泄漏到外部.某评估机构预估日本在十年内修复该核电站第1、2、3、4号机组的概率分别为
1
2
1
2
1
2
3
5
.假设这4台机组能否被修复相互独立.
(1)求十年内这4台机组中恰有1台机组被修复的概率;
(2)求十年内这4台机组中被修复的机组的总数为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

已知函数f(x)=sin(ωx+φ),(ω>0,,0<φ<π)的一系列对应值如表:
x -
π
12
π
6
12
3
11π
12
y 0 1 0 -1 0
(Ⅰ)求f(x)的解析式;
(Ⅱ)在△ABC中,a、b、c分别是△ABC的对边,若f(A)=
1
2
,c=2,a=
3
b
,求△ABC的面积.

查看答案和解析>>


同步练习册答案