(Ⅱ)解:设平面的法向量为, 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,圆M∶(x-1)2+(y-1)2=5在点A(3,2)处的切线方程可如下求解:设P(x,y)为切线上任一点,则由向量方法可得切线方程为:2x+y-8=0,类似地,在空间直角坐标系中,球M∶(x-1)2+(y-1)2+(z-1)2=6在点A(3,2,2)处的切面方程为________.

查看答案和解析>>

已知四棱柱ABCD-A1B1C1D1中的底面是菱形,且∠DAB=∠A1AB=∠A1AD=60°,AD=1,AA1=a,F为棱BB的中点,M为线段AC的中点.设===.试用向量法解下列问题:
(1)求证:直线MF∥平面ABCD;
(2)求证:直线MF⊥面A1ACC1
(3)是否存在a,使平面AFC1与平面ABCD所成二面角的平面角是30°?如果存在,求出相应的a 值,如果不存在,请说明理由.(提示:可设出两面的交线)

查看答案和解析>>

已知四棱柱ABCD-A1B1C1D1中的底面是菱形,且∠DAB=∠A1AB=∠A1AD=60°,AD=1,AA1=a,F为棱BB的中点,M为线段AC的中点.设
AB
=
e1
AD
=
e2
AA1
=
e3
.试用向量法解下列问题:
(1)求证:直线MF∥平面ABCD;
(2)求证:直线MF⊥面A1ACC1
(3)是否存在a,使平面AFC1与平面ABCD所成二面角的平面角是30°?如果存在,求出相应的a 值,如果不存在,请说明理由.(提示:可设出两面的交线)

查看答案和解析>>

如图,在正方体中,是棱的中点,在棱上.

,若二面角的余弦值为,求实数的值.

【解析】以A点为坐标原点,AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,设正方体的棱长为4,分别求出平面C1PQ法向量和面C1PQ的一个法向量,然后求出两法向量的夹角,建立等量关系,即可求出参数λ的值.

 

查看答案和解析>>

(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)

在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中.设.

(1)若,求方程在区间内的解集;

(2)若点是过点且法向量为的直线上的动点.当时,设函数的值域为集合,不等式的解集为集合. 若恒成立,求实数的最大值;

(3)根据本题条件我们可以知道,函数的性质取决于变量的值. 当时,试写出一个条件,使得函数满足“图像关于点对称,且在取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)

查看答案和解析>>


同步练习册答案