取得平面的一非零法向量为 ---------- 10分 查看更多

 

题目列表(包括答案和解析)

平面内与直线平行的非零向量称为直线的方向向量,与直线的方向向量垂直的非零向量称为直线的法向量.在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点且法向量为的直线(点法式)方程为,化简后得.则在空间直角坐标系中,平面经过点,且法向量为的平面(点法式)方程化简后的结果为        

 

查看答案和解析>>

已知AO为平面的一条斜线,O为斜足,OB为OA在平面内的射影,直线OC在平面内,且,则的大小为(   )

(A)   (B)   (C)   (D)

 

查看答案和解析>>

(2010•台州一模)我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且法向量为
n
=(1,-2)
的直线(点法式)方程为1×(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0. 类比以上方法,在空间直角坐标系中,经过点A(3,4,5),且法向量为
n
=(2,1,3)
的平面(点法式)方程为
2x+y+3z-21=0
2x+y+3z-21=0
(请写出化简后的结果).

查看答案和解析>>

 (08年莆田四中一模理)有以下几个命题:

①由的图象向右平移个单位长度可以得到的图象;

②若,则使取得最大值和最小值的最优解都有无数多个;

③若为一平面内两非零向量,则的充要条件;

④过空间上任意一点有且只有一个平面与两条异面直线都平行。

⑤若椭圆的左、右焦点分别为是该椭圆上的任意一点,则点关于的外角平分线的对称点的轨迹是圆。其中真命题的序号为        .(写出所有真命题的序号)

 

查看答案和解析>>

我们把在平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系xOy中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且其法向量为
n
=(1,-2)
的直线方程为1x(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比上述方法,在空间坐标系O-xyz中,经过点A(1,2,3),且其法向量为
n
=(-1,-2,1)
的平面方程为
 

查看答案和解析>>


同步练习册答案