由三垂线定理知.为二面角的平面角.-----9分 查看更多

 

题目列表(包括答案和解析)

(08年绍兴一中三模)   如图,已知矩形ABCD,PA⊥平面AC于点A,M、N分别是AB、PC的中点.

⑴求证:MN⊥AB;

⑵若平面PDC与平面ABCD所成的二面角为,能否确定,使得直线MN是异面直线AB与PC的公垂线?若能确定,求出的值;若不能确定,说明理由.

 

查看答案和解析>>

(2013•嘉定区二模)如图,已知点F(0,1),直线m:y=-1,P为平面上的动点,过点P作m的垂线,垂足为点Q,且
QP
QF
=
FP
FQ

(1)求动点P的轨迹C的方程;
(2)(理)过轨迹C的准线与y轴的交点M作直线m′与轨迹C交于不同两点A、B,且线段AB的垂直平分线与y轴的交点为D(0,y0),求y0的取值范围;
(3)(理)对于(2)中的点A、B,在y轴上是否存在一点D,使得△ABD为等边三角形?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

如图,已知三棱柱的侧棱与底面垂直,分别是的中点,点在直线上,且

(Ⅰ)证明:无论取何值,总有

(Ⅱ)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值;

(Ⅲ)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.

 

查看答案和解析>>

如图,已知三棱柱的侧棱与底面垂直,分别是的中点,点在直线上,且
(Ⅰ)证明:无论取何值,总有
(Ⅱ)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值;
(Ⅲ)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.

查看答案和解析>>

如图,已知三棱柱的侧棱与底面垂直,分别是的中点,点在直线上,且
(Ⅰ)证明:无论取何值,总有
(Ⅱ)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值;
(Ⅲ)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.

查看答案和解析>>


同步练习册答案