∠D1HD=时.D1D=DH=1 查看更多

 

题目列表(包括答案和解析)

(2012•增城市模拟)已知数列{an}满足a1=1,a2=2,且当n>1时,2an=an-1+an+1恒成立.
(1)求{an}的通项公式;
(2)设Sn=a1+a2+…+an,求和
1
S1
+
1
S2
+…+
1
Sn

查看答案和解析>>

(2012•盐城一模)对于函数f(x),若存在实数对(a,b),使得等式f(a+x)•f(a-x)=b对定义域中的每一个x都成立,则称函数f(x)是“(a,b)型函数”.
(1)判断函数f(x)=4x是否为“(a,b)型函数”,并说明理由;
(2)已知函数g(x)是“(1,4)型函数”,当x∈[0,2]时,都有1≤g(x)≤3成立,且当x∈[0,1],g(x)=x2+m(1-x)+1(m>0).试求m的取值范围.

查看答案和解析>>

(2011•东城区二模)已知a,b为两个正数,且a>b,设a1=
a+b
2
,b1=
ab
,当n≥2,n∈N*时,an=
an-1+bn-1
2
,bn=
an-1bn-1

(Ⅰ)求证:数列{an}是递减数列,数列{bn}是递增数列;
(Ⅱ)求证:an+1-bn+1
1
2
(an-bn);
(Ⅲ)是否存在常数C>0使得对任意n∈N*,有|an-bn|>C,若存在,求出C的取值范围;若不存在,试说明理由.

查看答案和解析>>

(1)已知:f(x)=
4x2-12x-32x+1
,x∈[0,1]
,求函数f(x)的单调区间和值域;
(2)a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1],判断函数g(x)的单调性并予以证明;
(3)当a≥1时,上述(1)、(2)小题中的函数f(x)、g(x),若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求a的取值范围.

查看答案和解析>>

已知函数f(x)=x2+2aln(1-x)(a∈R),g(x)=f(x)-x2+x.
(1)当a=
12
时,求函数g(x)的单调区间和极值;
(2)若f(x)在[-1,1)上是单调函数,求实数a的取值范围;
(3)若数列{an}满足a1=1,且(n+1)an+1=nan,Sn为数列{an}的前n项和,求证:当n≥2时,Sn<1+lnn.

查看答案和解析>>


同步练习册答案