题目列表(包括答案和解析)
|
|
a+mb |
1+m |
a2+mb2 |
1+m |
A、π | ||
B、
| ||
C、
| ||
D、2π |
难点磁场
∴方程①在区间[0,2]上至少有一个实数解.
首先,由Δ=(m-1)2-4≥0,得m≥3或m≤-1,当m≥3时,由x1+x2=-(m-1)<0及x1x2=1>0知,方程①只有负根,不符合要求.
当m≤-1时,由x1+x2=-(m-1)>0及x1x2=1>0知,方程①只有正根,且必有一根在区间(0,1]内,从而方程①至少有一个根在区间[0,2]内.
故所求m的取值范围是m≤-1.
歼灭难点训练
一、1.解析:对M将k分成两类:k=2n或k=2n+1(n∈Z),M={x|x=nπ+,n∈Z}∪{x|x=
nπ+,n∈Z},对N将k分成四类,k=4n或k=4n+1,k=4n+2,k=4n+3(n∈Z),N={x|x=nπ+,n∈Z}∪{x|x=nπ+,n∈Z}∪{x|x=nπ+π,n∈Z}∪{x|x=nπ+,n∈Z}.
答案:C
答案:D
4.解析:由A∩B只有1个交点知,圆x2+y2=1与直线=1相切,则1=,即ab=.
三、5.解:log2(x2-5x+8)=1,由此得x2-5x+8=2,∴B={2,3}.由x2+2x-8=0,∴C={2,-4},又A∩C=,∴2和-4都不是关于x的方程x2-ax+a2-19=0的解,而A∩B ,即A∩B≠,
∴3是关于x的方程x2-ax+a2-19=0的解,∴可得a=5或a=-2.
当a=5时,得A={2,3},∴A∩C={2},这与A∩C=不符合,所以a=5(舍去);当a=-2时,可以求得A={3,-5},符合A∩C=,A∩B ,∴a=-2.
6.解:(1)正确.在等差数列{an}中,Sn=,则(a1+an),这表明点(an,)的坐标适合方程y(x+a1),于是点(an, )均在直线y=x+a1上.
(2)正确.设(x,y)∈A∩B,则(x,y)中的坐标x,y应是方程组的解,由方程组消去y得:2a1x+a12=-4(*),当a1=0时,方程(*)无解,此时A∩B=;当a1≠0时,方程(*)只有一个解x=,此时,方程组也只有一解,故上述方程组至多有一解.
∴A∩B至多有一个元素.
(3)不正确.取a1=1,d=1,对一切的x∈N*,有an=a1+(n-1)d=n>0, >0,这时集合A中的元素作为点的坐标,其横、纵坐标均为正,另外,由于a1=1≠0.如果A∩B≠,那么据(2)的结论,A∩B中至多有一个元素(x0,y0),而x0=<0,y0=<0,这样的(x0,y0)A,产生矛盾,故a1=1,d=1时A∩B=,所以a1≠0时,一定有A∩B≠是不正确的.
∵z∈A,∴|z-2|≤2,代入得|-2|≤2,化简得|w-(b+i)|≤1.
∴集合A、B在复平面内对应的点的集合是两个圆面,集合A表示以点(2,0)为圆心,半径为2的圆面,集合B表示以点(b,1)为圆心,半径为1的圆面.
8.(1)证明:设x0是集合A中的任一元素,即有x0∈A.
∵A={x|x=f(x)},∴x0=f(x0).
即有f[f(x0)]=f(x0)=x0,∴x0∈B,故AB.
(2)证明:∵A={-1,3}={x|x2+px+q=x},
∴方程x2+(p-1)x+q=0有两根-1和3,应用韦达定理,得
∴f(x)=x2-x-3.
于是集合B的元素是方程f[f(x)]=x,也即(x2-x-3)2-(x2-x-3)-3=x(*)的根.
将方程(*)变形,得(x2-x-3)2-x2=0
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com