某企业生产一种产品时.固定成本为5000元.而每生产100台产品时直接消耗成本要增加2500元.市场对此商品年需求量为500台.销售的收入函数为R(x)=5x-x2(0≤x≤5),其中x是产品售出的数量(1)把利润表示为年产量的函数,(2)年产量多少时.企业所得的利润最大?(3)年产量多少时.企业才不亏本? 查看更多

 

题目列表(包括答案和解析)

某企业生产一种产品时,固定成本为5000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为R(x)=5x-
12
x2(万元)(0≤x≤5),其中x是产品售出的数量(单位:百台).
(1)把利润y表示为年产量x的函数;
(2)年产量多少时,企业所得的利润最大?
(3)年产量多少时,企业才不亏本?

查看答案和解析>>

某企业生产一种产品时,固定成本为5 000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为R(x)=5x-
12
x2
(万元)(0≤x≤5),其中x是产品售出的数量(单位:百台)
(1)把利润表示为年产量的函数;
(2)年产量多少时,企业所得的利润最大.

查看答案和解析>>

某企业生产一种产品时,固定成本为5000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为R(x)=5xx2(万元)(0≤x≤5),其中x是产品售出的数量(单位: 百台)

(1)把利润表示为年产量的函数;

(2)年产量多少时,企业所得的利润最大?

(3)年产量多少时,企业才不亏本?

查看答案和解析>>

某企业生产一种产品时,固定成本为5 000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为(万元)(0≤≤5),其中是产品售出的数量(单位:百台)

(1)把利润表示为年产量的函数;(2)年产量多少时,企业所得的利润最大;

 

查看答案和解析>>

某企业生产一种产品时,固定成本为5 000元,而每生产100台产品时直接消耗成本要增加2 500元,市场对此商品年需求量为500台,销售的收入函数为(万元)(0≤≤5),其中是产品售出的数量(单位:百台)

(1)把利润表示为年产量的函数;

(2)年产量多少时,企业所得的利润最大;

(3)年产量多少时,企业才不亏本?

 

查看答案和解析>>

难点磁场

(1)证明:先将f(x)变形:f(x)=log3[(x-2m)2+m+6ec8aac122bd4f6e],

mM时,m>1,∴(xm)2+m+6ec8aac122bd4f6e>0恒成立,故f(x)的定义域为R.

反之,若f(x)对所有实数x都有意义,则只须x2-4mx+4m2+m+6ec8aac122bd4f6e>0,令Δ<0,即16m2-4(4m2+m+6ec8aac122bd4f6e)<0,解得m>1,故mM.

(2)解析:设u=x2-4mx+4m2+m+6ec8aac122bd4f6e,∵y=log3u是增函数,∴当u最小时,f(x)最小.?而u=(x-2m)2+m+6ec8aac122bd4f6e,显然,当x=m时,u取最小值为m+6ec8aac122bd4f6e,此时f(2m)=log3(m+6ec8aac122bd4f6e)为最小值.

(3)证明:当mM时,m+6ec8aac122bd4f6e=(m-1)+ 6ec8aac122bd4f6e+1≥3,当且仅当m=2时等号成立.

∴log3(m+6ec8aac122bd4f6e)≥log33=1.

歼灭难点训练

一、1.解析:∵m1=x2在(-∞,-6ec8aac122bd4f6e)上是减函数,m2=6ec8aac122bd4f6e在(-∞,-6ec8aac122bd4f6e)上是减函数,

y=x2+6ec8aac122bd4f6ex∈(-∞,-6ec8aac122bd4f6e)上为减函数,

y=x2+6ec8aac122bd4f6e (x≤-6ec8aac122bd4f6e)的值域为[-6ec8aac122bd4f6e,+∞6ec8aac122bd4f6e.

答案:B

2.解析:令6ec8aac122bd4f6e=t(t≥0),则x=6ec8aac122bd4f6e.

y=6ec8aac122bd4f6e+t=-6ec8aac122bd4f6e (t-1)2+1≤1

∴值域为(-∞,16ec8aac122bd4f6e.

答案:A

二、3.解析:t=6ec8aac122bd4f6e+16×(6ec8aac122bd4f6e)2/V=6ec8aac122bd4f6e+6ec8aac122bd4f6e≥26ec8aac122bd4f6e=8.

答案:8

4.解析:由韦达定理知:x1+x2=m,x1x2=6ec8aac122bd4f6e,∴x12+x22=(x1+x2)2-2x1x2=m26ec8aac122bd4f6e=(m6ec8aac122bd4f6e)26ec8aac122bd4f6e,又x1,x2为实根,∴Δ≥0.∴m≤-1或m≥2,y=(m6ec8aac122bd4f6e)26ec8aac122bd4f6e在区间(-∞,1)上是减函数,在[2,+∞6ec8aac122bd4f6e上是增函数又抛物线y开口向上且以m=6ec8aac122bd4f6e为对称轴.故m=1时,

ymin=6ec8aac122bd4f6e.

答案:-1  6ec8aac122bd4f6e

三、5.解:(1)利润y是指生产数量x的产品售出后的总收入R(x)与其总成本C(x)?之差,由题意,当x≤5时,产品能全部售出,当x>5时,只能销售500台,所以

y=6ec8aac122bd4f6e

(2)在0≤x≤5时,y=-6ec8aac122bd4f6ex2+4.75x-0.5,当x=-6ec8aac122bd4f6e=4.75(百台)时,ymax=10.78125(万元),当x>5(百台)时,y<12-0.25×5=10.75(万元),?

所以当生产475台时,利润最大.?

(3)要使企业不亏本,即要求6ec8aac122bd4f6e

解得5≥x≥4.75-6ec8aac122bd4f6e≈0.1(百台)或5<x<48(百台)时,即企业年产量在10台到4800台之间时,企业不亏本.

6.解:(1)依题意(a2-1)x2+(a+1)x+1>0对一切xR恒成立,当a2-1≠0时,其充要条件是6ec8aac122bd4f6e

a<-1或a>6ec8aac122bd4f6e.又a=-1时,f(x)=0满足题意,a=1时不合题意.故a≤-1或a>为6ec8aac122bd4f6e所求.

(2)依题意只要t=(a2-1)x2+(a+1)x+1能取到(0,+∞)上的任何值,则f(x)的值域为R,故有6ec8aac122bd4f6e,解得1<a6ec8aac122bd4f6e,又当a2-1=0即a=1时,t=2x+1符合题意而a=-1时不合题意,∴1≤a6ec8aac122bd4f6e为所求.

7.解:设每周生产空调器、彩电、冰箱分别为x台、y台、z台,由题意得:

x+y+z=360?                                                                                                   ①          

6ec8aac122bd4f6e                                                                                        ②x>0,y>0,z≥60.                                                                                              ③?

假定每周总产值为S千元,则S=4x+3y+2z,在限制条件①②③之下,为求目标函数S的最大值,由①②消去z,得y=360-3x.                                                                                   ④

将④代入①得:x+(360-3x)+z=360,∴z=2x                                                             ⑤

z≥60,∴x≥30.                                                                                                    ⑥

再将④⑤代入S中,得S=4x+3(360-3x)+2?2x,即S=-x+1080.由条件⑥及上式知,当x=30时,产值S最大,最大值为S=-30+1080=1050(千元).得x=30分别代入④和⑤得y=360-90=270,z=2×30=60.

∴每周应生产空调器30台,彩电270台,冰箱60台,才能使产值最大,最大产值为1050千元.

6ec8aac122bd4f6e8.解:(1)如图所示:设BC=a,CA=b,AB=c,则斜边AB上的高h=6ec8aac122bd4f6e,

S1=πah+πbh=6ec8aac122bd4f6e,

f(x)=6ec8aac122bd4f6e                                                                                       ①

6ec8aac122bd4f6e

代入①消c,得f(x)=6ec8aac122bd4f6e.

在Rt△ABC中,有a=csinA,b=ccosA(0<A6ec8aac122bd4f6e6ec8aac122bd4f6e,则

x=6ec8aac122bd4f6e=sinA+cosA=6ec8aac122bd4f6esin(A+6ec8aac122bd4f6e).∴1<x6ec8aac122bd4f6e.

(2)f(x)=6ec8aac122bd4f6e +6,设t=x-1,则t∈(0, 6ec8aac122bd4f6e-1),y=2(t+6ec8aac122bd4f6e)+6在(0,6ec8aac122bd4f6e-16ec8aac122bd4f6e上是减函数,∴当x=(6ec8aac122bd4f6e-1)+1=6ec8aac122bd4f6e时,f(x)的最小值为66ec8aac122bd4f6e+8.

 

 

 

 

 


同步练习册答案