8.已知函数.则的大小关系为( ) 查看更多

 

题目列表(包括答案和解析)

已知函数数学公式,则f(x2+1)与f(x)的大小关系为________.

查看答案和解析>>

已知函数f(x)=x2-cosx,则f(-0.5),f(0),f(0.6)的由大到小关系为
f(0.6)>f(-0.5)>f(0)
f(0.6)>f(-0.5)>f(0)

查看答案和解析>>

已知函数fx)、gx)均为(ab)上的可导函数,在[ab]上连续且f′(x)>g′(x),fa)=ga),则当x∈(ab)时有(  )

A.fx)>gx

B.fx)<gx

C.fx)=gx

D.大小关系不能确定

查看答案和解析>>

已知函数fx)、gx)均为(ab)上的可导函数,在[ab]上连续且f′(x)>g′(x),fa)=ga),则当x∈(ab)时有(  )

A.fx)>gx

B.fx)<gx

C.fx)=gx

D.大小关系不能确定

查看答案和解析>>

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

一、选择题      ACCBC  BBCCD

 

二、填空题:,①②④

 

18(Ⅰ)由题意“”表示“答完题,第一题答对,第二题答错;或第一题答对,第二题也答对” 此时概率                 …6分

(Ⅱ)P()==,    P()==,………9分

-3

-1

1

 

3

P()== ,     P()==

的分布列为 

                                                   12分

  ……14分                                               

19解:(Ⅰ) 连接于点,连接

中,分别为中点,

平面平面平面.   …………(6分)

  (Ⅱ) 法一:过,由三垂线定理得

故∠为二面角的平面角.    ……………………………………(9分)

 令,则,又

  在中,

   解得

时,二面角的正弦值为.     ………………(14分)

法二:设,取中点,连接

为坐标原点建立空间直角坐标系,如右图所示:

设平面的法向量为,平面的法向量为

则有,即

,则

,解得

即当时,二面角的正弦值为.  …………………(14分)

 

20.(1)   ;

(2)轨迹方程为

(1)当时,轨迹方程为),表示抛物线弧段。

(2)当时,轨迹方程为

    A)当表示椭圆弧段;      B)当时表示双曲线弧段。

21.   Ⅰ)   …………(2分)

,则

时,;当

故有极大值…………(4分)

Ⅱ)∵=a+,x∈(0,e),∈[,+∞

   (1)若a≥-,则≥0,从而f(x)在(0,e)上增函数.

    ∴f(x)max =f(e)=ae+1≥0.不合题意. …………………………………7分

   (2)若a<->0a+>0,即0<x<-

    由a+<0,即-<x≤e.

    ∴f(x)=f(-)=-1+ln(-).

    令-1+ln(-)=-3,则ln(-)=-2.∴-=e

    即a=-e2. ∵-e2<-,∴a=-e2为所求. ……………………………10分

   Ⅲ)由Ⅰ)结论,=f(1)=-1.∴f(x)=-x+lnx≤-1,从而lnx≤x-1.

    令g(x)=|f(x)|-=x-lnx=x-(1+)lnx-……12分

   (1)当0<x<2时,有g(x)≥x-(1+)(x-1)-=>0.

   (2)当x≥2时,g′(x)=1-[(-)lnx+(1+)?]=

                   =.

    ∴g(x)在[2,+∞上增函数,∴g(x)≥g(2)=

    综合(1)、(2)知,当x>0时,g(x)>0,即|f(x)|>.

    故原方程没有实解.                       ………………………………16分

 

22.证明:(I)

    ①当,                       …………2分

②假设

时不等式也成立,                                                               …………4分

   (II)由

                                                                                              …………5分

   

                …………7分

                            …………8分

   (III)

,                                             …………10分

的等比数列,…………12分

                                   …………14分

 

 


同步练习册答案