C. D. 查看更多

 

题目列表(包括答案和解析)

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B错;≥4,故A错;由基本不等式得,即,故C正确;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D错.故选C.

查看答案和解析>>

定义域为R的函数满足,且当时,,则当时,的最小值为( )

A B C D

 

查看答案和解析>>

.过点作圆的弦,其中弦长为整数的共有  (  )    

A.16条          B. 17条        C. 32条            D. 34条

 

查看答案和解析>>

一、选择题      ACCBC  BBCCD

 

二、填空题:,①②④

 

18(Ⅰ)由题意“”表示“答完题,第一题答对,第二题答错;或第一题答对,第二题也答对” 此时概率                 …6分

(Ⅱ)P()==,    P()==,………9分

-3

-1

1

 

3

P()== ,     P()==

的分布列为 

                                                   12分

  ……14分                                               

19解:(Ⅰ) 连接于点,连接

中,分别为中点,

平面平面平面.   …………(6分)

  (Ⅱ) 法一:过,由三垂线定理得

故∠为二面角的平面角.    ……………………………………(9分)

 令,则,又

  在中,

   解得

时,二面角的正弦值为.     ………………(14分)

法二:设,取中点,连接

为坐标原点建立空间直角坐标系,如右图所示:

设平面的法向量为,平面的法向量为

则有,即

,则

,解得

即当时,二面角的正弦值为.  …………………(14分)

 

20.(1)   ;

(2)轨迹方程为

(1)当时,轨迹方程为),表示抛物线弧段。

(2)当时,轨迹方程为

    A)当表示椭圆弧段;      B)当时表示双曲线弧段。

21.   Ⅰ)   …………(2分)

,则

时,;当

故有极大值…………(4分)

Ⅱ)∵=a+,x∈(0,e),∈[,+∞

   (1)若a≥-,则≥0,从而f(x)在(0,e)上增函数.

    ∴f(x)max =f(e)=ae+1≥0.不合题意. …………………………………7分

   (2)若a<->0a+>0,即0<x<-

    由a+<0,即-<x≤e.

    ∴f(x)=f(-)=-1+ln(-).

    令-1+ln(-)=-3,则ln(-)=-2.∴-=e

    即a=-e2. ∵-e2<-,∴a=-e2为所求. ……………………………10分

   Ⅲ)由Ⅰ)结论,=f(1)=-1.∴f(x)=-x+lnx≤-1,从而lnx≤x-1.

    令g(x)=|f(x)|-=x-lnx=x-(1+)lnx-……12分

   (1)当0<x<2时,有g(x)≥x-(1+)(x-1)-=>0.

   (2)当x≥2时,g′(x)=1-[(-)lnx+(1+)?]=

                   =.

    ∴g(x)在[2,+∞上增函数,∴g(x)≥g(2)=

    综合(1)、(2)知,当x>0时,g(x)>0,即|f(x)|>.

    故原方程没有实解.                       ………………………………16分

 

22.证明:(I)

    ①当,                       …………2分

②假设

时不等式也成立,                                                               …………4分

   (II)由

                                                                                              …………5分

   

                …………7分

                            …………8分

   (III)

,                                             …………10分

的等比数列,…………12分

                                   …………14分

 

 


同步练习册答案