设函数f(x)=loga(x-3a)(a>0且a≠1),当点P(x,y)是函数y=f(x)图象上的点时.点Q(x-2a,-y)是函数y=g(x)图象上的点.(1)写出函数y=g(x)的解析式,(2)若当x∈[a+2,a+3]时.恒有|f(x)-g(x)|≤1,试确定a的取值范围. 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=
log
1-mx
x-1
a
为奇函数,g(x)=f(x)+loga(x-1)(ax+1)( a>1,且m≠1).
(1)求m值;
(2)求g(x)的定义域;
(3)若g(x)在[-
5
2
,-
3
2
]
上恒正,求a的取值范围.

查看答案和解析>>

设函数f(x)=loga(1-
ax
)
,其中0<a<1,
(1)证明:f(x)是(a,+∞)上的减函数;
(2)解不等式f(x)>1.

查看答案和解析>>

设函数f(x)=loga
x-2
x+2
,x∈[m,n]
是单调减函数,值域为[1+loga(n-1),1+loga(m-1)].
(1)求实数a的取值范围;
(2)求证:2<m<4<n;
(3)若函数g(x)=1+loga(x-1)-loga
x-2
x+2
,x∈[m,n]
的最大值为A,求证:0<A<1.

查看答案和解析>>

设函数f(x)=
loga(x+1) ,(x>0)
x2+ax+b ,(x≤0).
若f(3)=2,f(-2)=0,则b=(  )

查看答案和解析>>

设函数f (x)=loga(ax).(1)判断函数f (x)的奇偶性;

(2)判断函数f (x)在(0,+∞)的单调性并证明.

 

查看答案和解析>>

难点磁场

解:(1)由6ec8aac122bd4f6e>0,且2-x≠0得F(x)的定义域为(-1,1),设-1<x1x2<1,则

F(x2)-F(x1)=(6ec8aac122bd4f6e)+(6ec8aac122bd4f6e)

6ec8aac122bd4f6e,

x2x1>0,2-x1>0,2-x2>0,∴上式第2项中对数的真数大于1.

因此F(x2)-F(x1)>0,F(x2)>F(x1),∴F(x)在(-1,1)上是增函数.

(2)证明:由y=f(x)=6ec8aac122bd4f6e得:2y=6ec8aac122bd4f6e,

f1(x)=6ec8aac122bd4f6e,∵f(x)的值域为R,∴f-1(x)的定义域为R.

n≥3时,f-1(n)>6ec8aac122bd4f6e.

用数学归纳法易证2n>2n+1(n≥3),证略.

(3)证明:∵F(0)=6ec8aac122bd4f6e,∴F1(6ec8aac122bd4f6e)=0,∴x=6ec8aac122bd4f6eF1(x)=0的一个根.假设F1(x)=0还有一个解x0(x06ec8aac122bd4f6e),则F-1(x0)=0,于是F(0)=x0(x06ec8aac122bd4f6e).这是不可能的,故F-1(x)=0有惟一解.

歼灭难点训练

一、1.解析:由题意:g(x)+h(x)=lg(10x+1)                                                                      ①

g(-x)+h(-x)=lg(10x+1).即-g(x)+h(x)=lg(10x+1)                                             ②

由①②得:g(x)=6ec8aac122bd4f6e,h(x)=lg(10x+1)-6ec8aac122bd4f6e.

答案:C

2.解析:当a>1时,函数y=logax的图象只能在A和C中选,又a>1时,y=(1-a)x为减函数.

答案:B

二、3.解析:容易求得f- 1(x)=6ec8aac122bd4f6e,从而:

f1(x-1)=6ec8aac122bd4f6e

答案:6ec8aac122bd4f6e

4.解析:由题意,5分钟后,y1=aent,y2=aaent,y1=y2.∴n=6ec8aac122bd4f6eln2.设再过t分钟桶1中的水只有6ec8aac122bd4f6e,则y1=aen(5+t)=6ec8aac122bd4f6e,解得t=10.

答案:10

三、5.解:(1)设点Q的坐标为(x′,y′),则x′=x-2a,y′=-y.即x=x′+2a,y=-y′.

∵点P(x,y)在函数y=loga(x-3a)的图象上,∴-y′=loga(x′+2a-3a),即y′=loga6ec8aac122bd4f6e,∴g(x)=loga6ec8aac122bd4f6e.

(2)由题意得x-3a=(a+2)-3a=-2a+2>0;6ec8aac122bd4f6e=6ec8aac122bd4f6e>0,又a>0且a≠1,∴0<a<1,∵|f(x)-g(x)|=|loga(x-3a)-loga6ec8aac122bd4f6e|=|loga(x2-4ax+3a2)|?|f(x)-g(x)|≤1,∴-1≤loga(x2-4ax+3a2)≤1,∵0<a<1,∴a+2>2a.f(x)=x2-4ax+3a2在[a+2,a+3]上为减函数,∴μ(x)=loga(x2-4ax+3a2)在[a+2,a+3]上为减函数,从而[μ(x)]max=μ(a+2)=loga(4-4a),[μ(x)]min=μ(a+3)=loga(9-6a),于是所求问题转化为求不等式组6ec8aac122bd4f6e的解.

由loga(9-6a)≥-1解得0<a6ec8aac122bd4f6e,由loga(4-4a)≤1解得0<a6ec8aac122bd4f6e,

∴所求a的取值范围是0<a6ec8aac122bd4f6e.

6.解:f(x1)+f(x2)=logax1+logax2=logax1x2,

x1,x2∈(0,+∞),x1x2≤(6ec8aac122bd4f6e)2(当且仅当x1=x2时取“=”号),

a>1时,有logax1x2≤loga(6ec8aac122bd4f6e)2,

6ec8aac122bd4f6elogax1x2≤loga(6ec8aac122bd4f6e),6ec8aac122bd4f6e(logax1+logax2)≤loga6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6ef(x1)+f(x2)]≤f(6ec8aac122bd4f6e)(当且仅当x1=x2时取“=”号)

当0<a<1时,有logax1x2≥loga(6ec8aac122bd4f6e)2,

6ec8aac122bd4f6e(logax1+logax2)≥loga6ec8aac122bd4f6e,即6ec8aac122bd4f6ef(x1)+f(x2)]≥f(6ec8aac122bd4f6e)(当且仅当x1=x2时取“=”号).

7.解:由已知等式得:loga2x+loga2y=(1+2logax)+(1+2logay),即(logax-1)2+(logay-1)2=4,令u=logax,v=logay,k=logaxy,则(u-1)2+(v-1)2=4(uv≥0),k=u+v.在直角坐标系uOv内,圆弧(u-1)2+(v-1)2=4(uv≥0)与平行直线系v=-u+k有公共点,分两类讨论.

(1)当u≥0,v≥0时,即a>1时,结合判别式法与代点法得1+6ec8aac122bd4f6ek≤2(1+6ec8aac122bd4f6e);

(2)当u≤0,v≤0,即0<a<1时,同理得到2(1-6ec8aac122bd4f6e)≤k≤1-6ec8aac122bd4f6e.x综上,当a>1时,logaxy的最大值为2+26ec8aac122bd4f6e,最小值为1+6ec8aac122bd4f6e;当0<a<1时,logaxy的最大值为1-6ec8aac122bd4f6e,最小值为2-26ec8aac122bd4f6e.

8.解:∵2(6ec8aac122bd4f6ex)2+9(6ec8aac122bd4f6ex)+9≤0

∴(26ec8aac122bd4f6ex+3)( 6ec8aac122bd4f6ex+3)≤0.

∴-3≤6ec8aac122bd4f6ex≤-6ec8aac122bd4f6e.

6ec8aac122bd4f6e (6ec8aac122bd4f6e)36ec8aac122bd4f6ex6ec8aac122bd4f6e(6ec8aac122bd4f6e)6ec8aac122bd4f6e?

∴(6ec8aac122bd4f6e)6ec8aac122bd4f6ex≤(6ec8aac122bd4f6e)3,∴26ec8aac122bd4f6ex≤8

M={x|x∈[26ec8aac122bd4f6e,8]}

f(x)=(log2x-1)(log2x-3)=log22x-4log2x+3=(log2x-2)2-1.

∵26ec8aac122bd4f6ex≤8,∴6ec8aac122bd4f6e≤log2x≤3

∴当log2x=2,即x=4时ymin=-1;当log2x=3,即x=8时,ymax=0.

 

 

 


同步练习册答案