题目列表(包括答案和解析)
log |
a |
5 |
2 |
3 |
2 |
a | x |
x-2 |
x+2 |
x-2 |
x+2 |
|
设函数f (x)=loga(ax+).(1)判断函数f (x)的奇偶性;
(2)判断函数f (x)在(0,+∞)的单调性并证明.
难点磁场
解:(1)由>0,且2-x≠0得F(x)的定义域为(-1,1),设-1<x1<x2<1,则
∵x2-x1>0,2-x1>0,2-x2>0,∴上式第2项中对数的真数大于1.
因此F(x2)-F(x1)>0,F(x2)>F(x1),∴F(x)在(-1,1)上是增函数.
∴f-1(x)=,∵f(x)的值域为R,∴f--1(x)的定义域为R.
用数学归纳法易证2n>2n+1(n≥3),证略.
(3)证明:∵F(0)=,∴F-1()=0,∴x=是F-1(x)=0的一个根.假设F-1(x)=0还有一个解x0(x0≠),则F-1(x0)=0,于是F(0)=x0(x0≠).这是不可能的,故F-1(x)=0有惟一解.
歼灭难点训练
一、1.解析:由题意:g(x)+h(x)=lg(10x+1) ①
又g(-x)+h(-x)=lg(10-x+1).即-g(x)+h(x)=lg(10-x+1) ②
答案:C
2.解析:当a>1时,函数y=logax的图象只能在A和C中选,又a>1时,y=(1-a)x为减函数.
答案:B
4.解析:由题意,5分钟后,y1=ae-nt,y2=a-ae-nt,y1=y2.∴n=ln2.设再过t分钟桶1中的水只有,则y1=ae-n(5+t)=,解得t=10.
答案:10
三、5.解:(1)设点Q的坐标为(x′,y′),则x′=x-2a,y′=-y.即x=x′+2a,y=-y′.
∵点P(x,y)在函数y=loga(x-3a)的图象上,∴-y′=loga(x′+2a-3a),即y′=loga,∴g(x)=loga.
(2)由题意得x-3a=(a+2)-3a=-2a+2>0;=>0,又a>0且a≠1,∴0<a<1,∵|f(x)-g(x)|=|loga(x-3a)-loga|=|loga(x2-4ax+3a2)|?|f(x)-g(x)|≤1,∴-1≤loga(x2-4ax+3a2)≤1,∵0<a<1,∴a+2>2a.f(x)=x2-4ax+3a2在[a+2,a+3]上为减函数,∴μ(x)=loga(x2-4ax+3a2)在[a+2,a+3]上为减函数,从而[μ(x)]max=μ(a+2)=loga(4-4a),[μ(x)]min=μ(a+3)=loga(9-6a),于是所求问题转化为求不等式组的解.
由loga(9-6a)≥-1解得0<a≤,由loga(4-4a)≤1解得0<a≤,
6.解:f(x1)+f(x2)=logax1+logax2=logax1x2,
∵x1,x2∈(0,+∞),x1x2≤()2(当且仅当x1=x2时取“=”号),
∴logax1x2≤loga(),(logax1+logax2)≤loga,
即f(x1)+f(x2)]≤f()(当且仅当x1=x2时取“=”号)
∴(logax1+logax2)≥loga,即[f(x1)+f(x2)]≥f()(当且仅当x1=x2时取“=”号).
7.解:由已知等式得:loga2x+loga2y=(1+2logax)+(1+2logay),即(logax-1)2+(logay-1)2=4,令u=logax,v=logay,k=logaxy,则(u-1)2+(v-1)2=4(uv≥0),k=u+v.在直角坐标系uOv内,圆弧(u-1)2+(v-1)2=4(uv≥0)与平行直线系v=-u+k有公共点,分两类讨论.
(1)当u≥0,v≥0时,即a>1时,结合判别式法与代点法得1+≤k≤2(1+);
(2)当u≤0,v≤0,即0<a<1时,同理得到2(1-)≤k≤1-.x综上,当a>1时,logaxy的最大值为2+2,最小值为1+;当0<a<1时,logaxy的最大值为1-,最小值为2-2.
又f(x)=(log2x-1)(log2x-3)=log22x-4log2x+3=(log2x-2)2-1.
∴当log2x=2,即x=4时ymin=-1;当log2x=3,即x=8时,ymax=0.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com