设数列{an}的首项a1=1.前n项和Sn满足关系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4-).(1)求证:数列{an}是等比数列, 查看更多

 

题目列表(包括答案和解析)

设数列{an}的首项a1=1,前n项和Sn满足关系式tSn-(t+1)Sn-1=t(t>0,n∈N*,n≥2).
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
1bn-1
)
(n∈N*,n≥2),求数列{bn}的通项公式;
(Ⅲ)数列{bn}满足条件(Ⅱ),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1

查看答案和解析>>

设数列{an}的首项a1=1,前n项和Sn满足关系式.3tSn-(2t+3)Sn-1=3t(其中t>0,n=2,3,4,…)
(1)求证:数列{an}是等比数列..(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
1bn-1
)
(n=2,3,4…)求数列{bn}的通项公式.(3)求和Sn=b1b2-b2b3+b3b4 -…+(-1)n-1bnbn+1

查看答案和解析>>

设数列{an}的首项a1=1,前n项和Sn满足关系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4,…)
(1)求证:数列{an}是等比数列;
(2)设数列{an}是公比为f(t),作数列{bn},使b1=1,bn=f(
1
bn-1
)
(n=2,3,4,…),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1
(3)若t=-3,设cn=log3a2+log3a3+log3a4+…+log3an+1,Tn=
1
c1
+
1
c2
+…+
1
cn
,求使k
n•2n+1
(n+1)
≥(7-2n)Tn(n∈N+)恒成立的实数k的范围.

查看答案和解析>>

设数列{an}的首项a1=1,前n项和Sn满足关系式:3tSn-(2t+3)Sn1=3t(t>0,n=2,3,4…).

(1)求证: 数列{an}是等比数列;

(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f()(n=2,3,4…),求数列{bn}的通项bn

(3)求和: b1b2b2b3+b3b4-…+b2n1b2nb2nb2n+1.

查看答案和解析>>

设数列{an}的首项a1=1,前n项和Sn满足关系式tSn-(t+1)Sn-1=t(t>0,n∈N*,n≥2).
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)设数列{an}的公比为f(t),作数列{bn},使b1=1,(n∈N*,n≥2),求数列{bn}的通项公式;
(Ⅲ)数列{bn}满足条件(Ⅱ),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1

查看答案和解析>>

难点磁场

解析:(1)由题意,当n=1时,有6ec8aac122bd4f6eS1=a1

6ec8aac122bd4f6e,解得a1=2.当n=2时,有6ec8aac122bd4f6eS2=a1+a2,将a1=2代入,整理得(a2-2)2=16,由a2>0,解得a2=6.当n=3时,有6ec8aac122bd4f6eS3=a1+a2+a3,将a1=2,a2=6代入,整理得(a3-2)2=64,由a3>0,解得a3=10.故该数列的前3项为2,6,10.

(2)解法一:由(1)猜想数列{an}.有通项公式an=4n-2.下面用数学归纳法证明{an}的通项公式是an=4n-2,(nN*).

①当n=1时,因为4×1-2=2,,又在(1)中已求出a1=2,所以上述结论成立.

②假设当n=k时,结论成立,即有ak=4k-2,由题意,有6ec8aac122bd4f6e,将ak=4k-2.代入上式,解得2k=6ec8aac122bd4f6e,得Sk=2k2,由题意,有6ec8aac122bd4f6eSk+1=Sk+ak+1,将Sk=2k2代入得(6ec8aac122bd4f6e)2=2(ak+1+2k2),整理得ak+12-4ak+1+4-16k2=0,由ak+1>0,解得ak+1=2+4k,所以ak+1=2+4k=4(k+1)-2,即当n=k+1时,上述结论成立.根据①②,上述结论对所有的自然数nN*成立.

解法二:由题意知6ec8aac122bd4f6e,(nN*).整理得,Sn=6ec8aac122bd4f6e(an+2)2,由此得Sn+1=6ec8aac122bd4f6e(an+1+2)2,∴an+1=Sn+1Sn=6ec8aac122bd4f6e[(an+1+2)2-(an+2)2].整理得(an+1+an)(an+1an-4)=0,由题意知an+1+an≠0,∴an+1an=4,即数列{an}为等差数列,其中a1=2,公差d=4.∴an=a1+(n-1)d=2+4(n-1),即通项公式为an=4n-2.

解法三:由已知得6ec8aac122bd4f6e,(nN*)①,所以有6ec8aac122bd4f6e②,由②式得6ec8aac122bd4f6e,整理得Sn+1-26ec8aac122bd4f6e?6ec8aac122bd4f6e+2-Sn=0,解得6ec8aac122bd4f6e,由于数列{an}为正项数列,而6ec8aac122bd4f6e,因而6ec8aac122bd4f6e,即{Sn}是以6ec8aac122bd4f6e为首项,以6ec8aac122bd4f6e为公差的等差数列.所以6ec8aac122bd4f6e= 6ec8aac122bd4f6e+(n-1) 6ec8aac122bd4f6e=6ec8aac122bd4f6en,Sn=2n2

an=6ec8aac122bd4f6ean=4n-2(nN*).

(3)令cn=bn-1,则cn=6ec8aac122bd4f6e

6ec8aac122bd4f6e

歼灭难点训练

一、6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

答案:1+6ec8aac122bd4f6e

2.解析:由题意所有正三角形的边长构成等比数列{an},可得an=6ec8aac122bd4f6e,正三角形的内切圆构成等比数列{rn},可得rn=6ec8aac122bd4f6ea,?

∴这些圆的周长之和c=6ec8aac122bd4f6e2π(r1+r2+…+rn)=6ec8aac122bd4f6e a2

面积之和S=6ec8aac122bd4f6eπ(n2+r22+…+rn2)=6ec8aac122bd4f6ea2

答案:周长之和6ec8aac122bd4f6eπa,面积之和6ec8aac122bd4f6ea2

二、3.解:(1)可解得6ec8aac122bd4f6e,从而an=2n,有Sn=n2+n

(2)Tn=2n+n-1.

(3)TnSn=2nn2-1,验证可知,n=1时,T1=S1n=2时T2S2n=3时,T3S3;n=4时,T4S4n=5时,T5S5n=6时T6S6.猜想当n≥5时,TnSn,即2nn2+1

可用数学归纳法证明(略).

4.解:(1)由an+2=2an+1an6ec8aac122bd4f6ean+2an+1=an+1an可知{an}成等差数列,?

d=6ec8aac122bd4f6e=-2,∴an=10-2n.

(2)由an=10-2n≥0可得n≤5,当n≤5时,Sn=-n2+9n,当n>5时,Sn=n2-9n+40,故Sn=6ec8aac122bd4f6e

(3)bn=6ec8aac122bd4f6e

6ec8aac122bd4f6e;要使Tn6ec8aac122bd4f6e总成立,需6ec8aac122bd4f6eT1=6ec8aac122bd4f6e成立,即m<8且mZ,故适合条件的m的最大值为7.

5.解:(1)由已知Sn+1=(m+1)-man+1?①,Sn=(m+1)-man②,由①-②,得an+1=manman+1,即(m+1)an+1=man对任意正整数n都成立.

m为常数,且m<-1

6ec8aac122bd4f6e,即{6ec8aac122bd4f6e}为等比数列.

(2)当n=1时,a1=m+1-ma1,∴a1=1,从而b1=6ec8aac122bd4f6e.

由(1)知q=f(m)=6ec8aac122bd4f6e,∴bn=f(bn1)=6ec8aac122bd4f6e (nN*,且n≥2)

6ec8aac122bd4f6e,即6ec8aac122bd4f6e,∴{6ec8aac122bd4f6e}为等差数列.∴6ec8aac122bd4f6e=3+(n-1)=n+2,

6ec8aac122bd4f6e(nN*).

6ec8aac122bd4f6e

6.解:(1)设数列{bn}的公差为d,由题意得:6ec8aac122bd4f6e解得b1=1,d=3,

bn=3n-2.

(2)由bn=3n-2,知Sn=loga(1+1)+loga(1+6ec8aac122bd4f6e)+…+loga(1+6ec8aac122bd4f6e)

=loga[(1+1)(1+6ec8aac122bd4f6e)…(1+6ec8aac122bd4f6e)],6ec8aac122bd4f6elogabn+1=loga6ec8aac122bd4f6e.

因此要比较Sn6ec8aac122bd4f6elogabn+1的大小,可先比较(1+1)(1+6ec8aac122bd4f6e)…(1+6ec8aac122bd4f6e)与6ec8aac122bd4f6e的大小,

n=1时,有(1+1)>6ec8aac122bd4f6e

n=2时,有(1+1)(1+6ec8aac122bd4f6e)>6ec8aac122bd4f6e

 由此推测(1+1)(1+6ec8aac122bd4f6e)…(1+6ec8aac122bd4f6e)>6ec8aac122bd4f6e                                ①

若①式成立,则由对数函数性质可判定:

a>1时,Sn6ec8aac122bd4f6elogabn+1,                                                                           ②

当0<a<1时,Sn6ec8aac122bd4f6elogabn+1,                                                                     ③

下面用数学归纳法证明①式.

(?)当n=1时,已验证①式成立.

(?)假设当n=k时(k≥1),①式成立,即:

6ec8aac122bd4f6e.那么当n=k+1时,

6ec8aac122bd4f6e

这就是说①式当n=k+1时也成立.

由(?)(?)可知①式对任何正整数n都成立.

由此证得:

a>1时,Sn6ec8aac122bd4f6elogabn+1;当0<a<1时,Sn6ec8aac122bd4f6elogabn+1?.

7.解:(1)由S1=a1=1,S2=1+a2,得3t(1+a2)-(2t+3)=3t.

a2=6ec8aac122bd4f6e.

又3tSn-(2t+3)Sn1=3t,                                                                                  ①

3tSn1-(2t+3)Sn2=3t                                                                                      

①-②得3tan-(2t+3)an1=0.

6ec8aac122bd4f6e,n=2,3,4…,所以{an}是一个首项为1公比为6ec8aac122bd4f6e的等比数列;

(2)由f(t)= 6ec8aac122bd4f6e=6ec8aac122bd4f6e,得bn=f(6ec8aac122bd4f6e)=6ec8aac122bd4f6e+bn1?.

可见{bn}是一个首项为1,公差为6ec8aac122bd4f6e的等差数列.

于是bn=1+6ec8aac122bd4f6e(n-1)=6ec8aac122bd4f6e;

(3)由bn=6ec8aac122bd4f6e,可知{b2n1}和{b2n}是首项分别为1和6ec8aac122bd4f6e,公差均为6ec8aac122bd4f6e的等差数列,于是b2n=6ec8aac122bd4f6e,

b1b2b2b3+b3b4b4b5+…+b2n1b2nb2nb2n+1?

=b2(b1b3)+b4(b3b5)+…+b2n(b2n1b2n+1)

=-6ec8aac122bd4f6e (b2+b4+…+b2n)=-6ec8aac122bd4f6e?6ec8aac122bd4f6en(6ec8aac122bd4f6e+6ec8aac122bd4f6e)=-6ec8aac122bd4f6e (2n2+3n)


同步练习册答案