(1)求证:平面ABD⊥平面ACD,(2)求AD与BC所成的角,(3)求二面角A―BD―C的大小. 查看更多

 

题目列表(包括答案和解析)

如图所示,在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=2,另一个侧面ABC是正三角形.

(1)求证:AD⊥BC;

(2)求二面角B-AC—D的大小;

(3)(理)在线段AC上是否存在一点E,使ED与平面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.

第21题图

查看答案和解析>>

在直角梯形ABCD中,AD∥BC,数学公式,∠ABC=90°,如图1.把△ABD沿BD翻折,使得平面ABD⊥平面BCD,如图2.
(Ⅰ)求证:CD⊥AB;
(Ⅱ)若点M为线段BC中点,求点M到平面ACD的距离;
(Ⅲ)在线段BC上是否存在点N,使得AN与平面ACD所成角为60°?若存在,求出数学公式的值;若不存在,说明理由.

查看答案和解析>>

设D是△ABC的BC边上一点,把△ACD沿AD折起,使C点所处的新位置C′在平面ABD上的射影H恰好在AB上.
(1)求证:直线C′D与平面ABD和平面AHC′所成的两个角之和不可能超过90°;
(2)若∠BAC=90°,二面角C′-AD-H为60°,求∠BAD的正切值.
???

查看答案和解析>>

D是△ABCBC边上一点,把△ACD沿AD折起,使C点所处的新位置C′在平面ABD上的射影H恰好在AB上.

(1)求证:直线CD与平面ABD和平面AHC′所成的两个角之和不可能超过90°;

(2)若∠BAC=90°,二面角C′—ADH为60°,求∠BAD的正切值.

???

查看答案和解析>>

设D是△ABC的BC边上一点,把△ACD沿AD折起,使C点所处的新位置C′在平面ABD上的射影H恰好在AB上.
(1)求证:直线C′D与平面ABD和平面AHC′所成的两个角之和不可能超过90°;
(2)若∠BAC=90°,二面角C′-AD-H为60°,求∠BAD的正切值.
???

查看答案和解析>>

难点磁场

(1)证明:作NAαAMBβB,连接APPBBNAM,再作AClCBDlD,连接NCMD.

NAα,MBβ,∴∠MPB、∠NPA分别是MPβ所成角及NPα所成角,∠MNB,∠NMA分别是MNβ,α所成角,∴∠MPB=∠NPA.

在Rt△MPB与Rt△NPA中,PM=PN,∠MPB=∠NPA,∴△MPB≌△NPA,∴MB=NA.

在Rt△MNB与Rt△NMA中,MB=NAMN是公共边,∴△MNB≌△NMA,∴∠MNB=∠NMA,即(1)结论成立.

(2)解:设∠MNB=θ,MN=6ec8aac122bd4f6ea,则PB=PN=a,MB=NA=6ec8aac122bd4f6easinθNB=6ec8aac122bd4f6eacosθ?,∵MBβ,BDl,∴MDl,∴∠MDB是二面角αlβ的平面角,

∴∠MDB=60°,同理∠NCA=60°,

BD=AC=6ec8aac122bd4f6easinθ,CN=DM=6ec8aac122bd4f6easinθ,

MBβMPPN,∴BPPN

∵∠BPN=90°,∠DPB=∠CNP,∴△BPD∽△PNC,∴6ec8aac122bd4f6e

6ec8aac122bd4f6e

整理得,16sin4θ-16sin2θ+3=0

解得sin2θ=6ec8aac122bd4f6e,sinθ=6ec8aac122bd4f6e,当sinθ=6ec8aac122bd4f6e时,CN=6ec8aac122bd4f6easinθ= 6ec8aac122bd4f6eaPN不合理,舍去.

∴sinθ=6ec8aac122bd4f6e,∴MNβ所成角为30°.

歼灭难点训练

一、1.解析:(特殊位置法)将P点取为A1,作OEADE,连结A1E,则A1EOA1的射影,又AMA1E,∴AMOA1,即AMOP成90°角.

答案:D

2.解析:作AOCB的延长线,连OD,则OD即为AD在平面BCD上的射影,

AO=OD=6ec8aac122bd4f6ea,∴∠ADO=45°.

答案:B

二、3.解析:在OC上取一点C,使OC=1,过C分别作CAOCOAACBOCOBB,则AC=1,,OA=6ec8aac122bd4f6eBC=6ec8aac122bd4f6eOB=2,Rt△AOB中,AB2=6,△ABC中,由余弦定理,得cosACB=-6ec8aac122bd4f6e.

答案:-6ec8aac122bd4f6e

4.解析:设一个侧面面积为S1,底面面积为S,则这个侧面在底面上射影的面积为6ec8aac122bd4f6e,由题设得6ec8aac122bd4f6e,设侧面与底面所成二面角为θ,则cosθ=6ec8aac122bd4f6e,∴θ=60°.

答案:60°

三、5.(1)解:因为PA⊥平面ACABBC,∴PBBC,即∠PBC=90°,由勾股定理得PB=6ec8aac122bd4f6e.

 

PC=6ec8aac122bd4f6e.

6ec8aac122bd4f6e

(2)解:如图,过点CCEBDAD的延长线于E,连结PE,则PCBD所成的角为∠PCE或它的补角.

CE=BD=6ec8aac122bd4f6e,且PE=6ec8aac122bd4f6e

∴由余弦定理得cosPCE=6ec8aac122bd4f6e

PCBD所成角的余弦值为6ec8aac122bd4f6e.

(3)证明:设PBPC中点分别为GF,连结FGAGDF,则GFBCAD,且GF=6ec8aac122bd4f6eBC=1=AD,从而四边形ADFG为平行四边形,

AD⊥平面PAB,∴ADAG,即ADFG为矩形,DFFG.

在△PCD中,PD=6ec8aac122bd4f6eCD=6ec8aac122bd4f6eFBC中点,∴DFPC

从而DF⊥平面PBC,故平面PDC⊥平面PBC,即二面角BPCD为直二面角.?

6.解:(1)如图,在平面ABC内,过AAHBC,垂足为H,则AH⊥平面DBC

∴∠ADH即为直线AD与平面BCD所成的角.由题设知△AHB≌△AHD,则DHBHAH=DH

6ec8aac122bd4f6e

∴∠ADH=45°

(2)∵BCDH,且DHAD在平面BCD上的射影,

BCAD,故ADBC所成的角为90°.

(3)过HHRBD,垂足为R,连结AR,则由三垂线定理知,ARBD,故∠ARH为二面角ABDC的平面角的补角.设BC=a,则由题设知,AH=DH=6ec8aac122bd4f6e,在△HDB中,HR=6ec8aac122bd4f6ea,∴tanARH=6ec8aac122bd4f6e=2

故二面角ABDC大小为π-arctan2.

7.(1)证明:取BC中点E,连结AE,∵AB=AC,∴AEBC

∵平面ABC⊥平面BCD,∴AE⊥平面BCD

BCCD,由三垂线定理知ABCD.

又∵ABAC,∴AB⊥平面BCD,∵AB6ec8aac122bd4f6e平面ABD.

∴平面ABD⊥平面ACD.

(2)解:在面BCD内,过DDFBC,过EEFDF,交DFF,由三垂线定理知AFDF,∠ADFADBC所成的角.

AB=m,则BC=6ec8aac122bd4f6emCE=DF=6ec8aac122bd4f6em,CD=EF=6ec8aac122bd4f6em

6ec8aac122bd4f6e

ADBC所成的角为arctan6ec8aac122bd4f6e

(3)解:∵AE⊥面BCD,过EEGBDG,连结AG,由三垂线定理知AGBD

∴∠AGE为二面角ABDC的平面角

6ec8aac122bd4f6e

∵∠EBG=30°,BE=6ec8aac122bd4f6em,∴EG=6ec8aac122bd4f6em?

AE=6ec8aac122bd4f6em,∴tanAGE=6ec8aac122bd4f6e=2,∴∠AGE=arctan2.

即二面角ABDC的大小为arctan2.

8.(1)证明:连结DH,∵CH⊥平面ABD,∴∠CDHCD与平面ABD所成的角且平面CHA⊥平面ABD,过DDEAB,垂足为E,则DE⊥平面CHA.

故∠DCECD与平面CHA所成的角

∵sinDCE=6ec8aac122bd4f6e6ec8aac122bd4f6e=sinDCH

∴∠DCE≤∠DCH,

∴∠DCE+∠CDE≤∠DCH+∠CDE=90°

(2)解:作HGAD,垂足为G,连结CG,

CGAD,故∠CGH是二面角C′―ADH的平面角

即∠CGH=60°,计算得tanBAD=6ec8aac122bd4f6e.

 

 


同步练习册答案