题目列表(包括答案和解析)
难点磁场
解:(1)在矩形ABCD中,作AE⊥BD,E为垂足
连结QE,∵QA⊥平面ABCD,由三垂线定理得QE⊥BE
∴QE的长为Q到BD的距离
在矩形ABCD中,AB=a,AD=b,
(2)解法一:∵平面BQD经过线段PA的中点,
∴P到平面BQD的距离等于A到平面BQD的距离
在△AQE中,作AH⊥QE,H为垂足
∵BD⊥AE,BD⊥QE,∴BD⊥平面AQE ∴BD⊥AH
∴AH⊥平面BQE,即AH为A到平面BQD的距离.
解法二:设点A到平面QBD的距离为h,由
VA―BQD=VQ―ABD,得S△BQD?h=S△ABD?AQ
歼灭难点训练
一、1.解析:过点M作MM′⊥EF,则MM′⊥平面BCF
∵∠MBE=∠MBC
∴BM′为∠EBC为角平分线,
答案:A
2.解析:交线l过B与AC平行,作CD⊥l于D,连C1D,则C1D为A1C1与l的距离,而CD等于AC上的高,即CD=,Rt△C1CD中易求得C1D==2.6
答案:C
二、3.解析:以A、B、C、D为顶点的四边形为空间四边形,且为正四面体,取P、Q分别为AB、CD的中点,因为AQ=BQ=a,∴PQ⊥AB,同理可得PQ⊥CD,故线段PQ的
4.解析:显然∠FAD是二面角E―AB―C的平面角,∠FAD=30°,过F作FG⊥平面ABCD于G,则G必在AD上,由EF∥平面ABCD.
三、5.(1)证明:由于BC1∥AD1,则BC1∥平面ACD1
同理,A1B∥平面ACD1,则平面A1BC1∥平面ACD1
(2)解:设两平行平面A1BC1与ACD1间的距离为d,则d等于D1到平面A1BC1的距离.易求A1C1=5,A1B=2,BC1=,则cosA1BC1=,则sinA1BC1=,则S=,由于,则S?d=?BB1,代入求得d=,即两平行平面间的距离为.
(3)解:由于线段B1D1被平面A1BC1所平分,则B1、D1到平面A1BC1的距离相等,则由(2)知点B1到平面A1BC1的距离等于.
6.解:(1)连结DB交AC于O,连结EO,
∵底面ABCD是正方形
∴DO⊥AC,又ED⊥面ABCD
∴EO⊥AC,即∠EOD=45°
(2)∵A1A⊥底面ABCD,∴A1A⊥AC,又A1A⊥A1B1
∴A1A是异面直线A1B1与AC间的公垂线
又EO∥BD1,O为BD中点,∴D1B=2EO=2a
(3)连结B1D交D1B于P,交EO于Q,推证出B1D⊥面EAC
7.解:(1)∵BB1⊥A1E,CC1⊥A1F,BB1∥CC1
∴BB1⊥平面A1EF
即面A1EF⊥面BB1C1C
在Rt△A1EB1中,
∵∠A1B1E=45°,A1B1=a
∴△EA1F为等腰直角三角形,∠EA1F=90°
过A1作A1N⊥EF,则N为EF中点,且A1N⊥平面BCC1B1
即A1N为点A1到平面BCC1B1的距离
∴a=2,∴所求距离为2
(2)设BC、B1C1的中点分别为D、D1,连结AD、DD1和A1D1,则DD1必过点N,易证ADD1A1为平行四边形.
∵B1C1⊥D1D,B1C1⊥A1N
∴B1C1⊥平面ADD1A1
∴BC⊥平面ADD1A1
得平面ABC⊥平面ADD1A1,过A1作A1M⊥平面ABC,交AD于M,
若A1M=A1N,又∠A1AM=∠A1D1N,∠AMA1=∠A1ND1=90°
∴△AMA1≌△A1ND1,∴AA1=A1D1=,即当AA1=时满足条件.
从而AD与PC间的距离就是直线AD与平面PBC间的距离.
过A作AE⊥PB,又AE⊥BC
∴AE⊥平面PBC,AE为所求.
在等腰直角三角形PAB中,PA=AB=a
下面在AD上找一点F,使PC⊥CF
取MD中点F,△ACM、△FCM均为等腰直角三角形
∴∠ACM+∠FCM=45°+45°=90°
∴FC⊥AC,即FC⊥PC∴在AD上存在满足条件的点F.
[学法指导]立体几何中的策略思想及方法
立体几何中的策略思想及方法
近年来,高考对立体几何的考查仍然注重于空间观点的建立和空间想象能力的培养.题目起点低,步步升高,给不同层次的学生有发挥能力的余地.大题综合性强,有几何组合体中深层次考查空间的线面关系.因此,高考复习应在抓好基本概念、定理、表述语言的基础上,以总结空间线面关系在几何体中的确定方法入手,突出数学思想方法在解题中的指导作用,并积极探寻解答各类立体几何问题的有效的策略思想及方法.
一、领悟解题的基本策略思想
高考改革稳中有变.运用基本数学思想如转化,类比,函数观点仍是考查中心,选择好典型例题,在基本数学思想指导下,归纳一套合乎一般思维规律的解题模式是受学生欢迎的,学生通过熟练运用,逐步内化为自己的经验,解决一般基本数学问题就会自然流畅.
二、探寻立体几何图形中的基面
立体几何图形必须借助面的衬托,点、线、面的位置关系才能显露地“立”起来.在具体的问题中,证明和计算经常依附于某种特殊的辅助平面即基面.这个辅助平面的获取正是解题的关键所在,通过对这个平面的截得,延展或构造,纲举目张,问题就迎刃而解了.
三、重视模型在解题中的应用
学生学习立体几何是从认识具体几何模型到抽象出空间点、线、面的关系,从而培养空间想象能力.而数学问题中许多图形和数量关系都与我们熟悉模型存在着某种联系.它引导我们以模型为依据,找出起关键作用的一些关系或数量,对比数学问题中题设条件,突出特性,设法对原图形补形,拼凑、构造、嵌入、转化为熟知的、形象的、直观的模型,利用其特征规律获取优解.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com