题目列表(包括答案和解析)
(2)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的必要条件?如果存在,求出p的取值范围.
(2)设m是|a|、|b|和1中最大的一个,当|x|>m时,求证:||<2.
难点磁场
解:记元件A、B、C正常工作的事件分别为A、B、C,由已知条件P(A)=0.80, P(B)=0.90,P(C)=0.90.
(1)因为事件A、B、C是相互独立的,所以,系统N1正常工作的概率P1=P(A?B?C)=P(A)P(B)P(C)=0.648,故系统N1正常工作的概率为0.648
=0.80×[1-(1-0.90)(1-0.90)]=0.792
故系统N2正常工作的概率为0.792
歼灭难点训练
一、1.解析:设甲命中目标为事件A,乙命中目标为事件B,丙命中目标为事件C,则目标被击中的事件可以表示为A+B+C,即击中目标表示事件A、B、C中至少有一个发生.
答案:A
2.解析:Eξ=(1+2+3)?=2,Eξ2=(12+22+32)?=
∴D(3ξ+5)=9Eξ=6.
答案:A
二、3.解析:由条件知,ξ的取值为0,1,2,3,并且有P(ξ=0)=,
答案:0.3
4.解析:因为每组人数为13,因此,每组选1人有C种方法,所以所求概率为P=.
三、5.解:(1)我们把“甲射击一次击中目标”叫做事件A,“乙射击一次击中目标”叫做事件B.显然事件A、B相互独立,所以两人各射击一次都击中目标的概率是P(A?B)?=P(A)?P(B)=0.6×0.6=0.36
答:两人都击中目标的概率是0.36
(2)同理,两人各射击一次,甲击中、乙未击中的概率是P(A?)=P(A)?P()=0.6×
(1-0.6)=0.6×0.4=0.24
甲未击中、乙击中的概率是P(?B)=P()P(B)=0.24,显然,“甲击中、乙未击中”和“甲未击中、乙击中”是不可能同时发生,即事件A?与?B互斥,所以恰有一人击中目标的概率是P(A?)+P(?B)=0.24+0.24=0.48
答:其中恰有一人击中目标的概率是0.48.
(2)两人各射击一次,至少有一人击中目标的概率P=P(A?B)+[P(A?)+P()?B]=0.36+0.48=0.84
答:至少有一人击中目标的概率是0.84.
6.解:(1)因为ξ所在区间上的概率总和为1,所以 (1-a+2-a)?1=1,
概率密度曲线如图:
解得P≤-1或P≥2
8.解:以X表示一周5天内机器发生故障的天数,则X-B(5,0.2),于是X有概率分布P(X=k)=C0.2k0.85-k,k=0,1,2,3,4,5.
以Y表示一周内所获利润,则
Y的概率分布为:
P(Y=10)=P(X=0)=0.85=0.328
P(Y=0)=P(X=2)=C?0.22?0.83=0.205
P(Y=-2)=P(X≥3)=1-P(X=0)-P(X=1)-P(X=2)=0.057
故一周内的期望利润为:
EY=10×0.328+5×0.410+0×0.205-2×0.057=5.216(万元)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com