题目列表(包括答案和解析)
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。
已知函数的反函数。定义:若对给定的实数,函数与互为反函数,则称满足“和性质”;若函数与互为反函数,则称满足“积性质”。
(1) 判断函数是否满足“1和性质”,并说明理由;
(2) 求所有满足“2和性质”的一次函数;
(3) 设函数对任何,满足“积性质”。求的表达式。
(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,
第3小题满分7分.
已知双曲线.
(1)求双曲线的渐近线方程;
(2)已知点的坐标为.设是双曲线上的点,是点关于原点的对称点.
记.求的取值范围;
(3)已知点的坐标分别为,为双曲线上在第一象限内的点.记为经过原点与点的直线,为截直线所得线段的长.试将表示为直线的斜率的函数.
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分、第3小题满分6分.
设,常数,定义运算“”:,定义运算“”: ;对于两点、,定义.
(1)若,求动点的轨迹;
(2)已知直线与(1)中轨迹交于、两点,若,试求的值;
(3)在(2)中条件下,若直线不过原点且与轴交于点S,与轴交于点T,并且与(1)中轨迹交于不同两点P、Q , 试求的取值范围.
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知函数的反函数.定义:若对给定的实数,函数与互为反函数,则称满足“和性质”;若函数与互为反函数,则称满足“积性质”.
(1) 判断函数是否满足“1和性质”,并说明理由;
(2) 求所有满足“2和性质”的一次函数;
(3) 设函数对任何,满足“积性质”.求的表达式.
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分。
已知双曲线C的中心是原点,右焦点为F,一条渐近线m:,设过点A的直线l的方向向量。
(1)求双曲线C的方程;
(2)若过原点的直线,且a与l的距离为,求K的值;
(3)证明:当时,在双曲线C的右支上不存在点Q,使之到直线l的距离为。
一、 填空题:
1、 2、 3、128 4、 5、64 6、
7、 8、 9、-4 10、15 11、
12、(1)(2)(5)
二、选择题:
13、D 14、 C 15、 B 16、 C
17、解:以A为原点,以AB、AD、AP所在直线分别轴,
建立空间直角坐标系。 -----2分
则 C(2,1,0) N(1,0,1) =(-1,-1,1)---4分
D(0,2,0) M(1,,1) =(1,-,1)---6分
设与的夹角为,
----8分
---10分
异面直线与所成的角为 -----12分
18、解:延长,作交于D,------4分
设,则
------8分
解得.------10分
故船继续朝原方向前进有触礁的危险.-----12
19、解: (1)因为f(x+y)=f(x)+f(y),
令x=y=0,代入①式,-----2分
得f(0+0)=f(0)+f(0),即 f(0)=0 --------4分
(2)令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,
则有0=f(x)+f(-x).------6分
即f(-x)=-f(x)对任意x∈R成立,
所以f(x)是奇函数.......8分
(3) f(3)=log3>0,即f(3)>f(0),
又f(x)在R上是单调函数,所以f(x)在R上是增函数,----10分
又由(1)f(x)是奇函数.
f(k?3)<-f(3-9-2)=f(-3+9+2),
k?3<-3+9+2,
得------12分
------------14分
20、解:(1)为等差数列,∵,又,
∴ ,是方程的两个根
又公差,∴,∴, -------- 2分
∴ ∴ ∴ -----------4分
(2)由(1)知, -----------5分
∴
∴,, ------------7分
∵是等差数列,∴,∴ ----------8分
∴(舍去) ------------9分
(3)由(2)得 -------------11分
,时取等号 ------- 13分
,时取等号15分
(1)、(2)式中等号不可能同时取到,所以 -----------16分
21、解:(1)椭圆与相似. -----2分
因为的特征三角形是腰长为4,底边长为的等腰三角形,
而椭圆的特征三角形是腰长为2,
底边长为的等腰三角形,
因此两个等腰三角形相似,且相似比为. --- 6分
(2)椭圆的方程为:. --------8分
假定存在,则设、所在直线为,中点为.
则. -------10分
所以.
中点在直线上,所以有. ----12分
.
. -------14分
(3)椭圆的方程为:.
两个相似椭圆之间的性质有: 写出一个给2分
① 两个相似椭圆的面积之比为相似比的平方;
② 分别以两个相似椭圆的顶点为顶点的四边形也相似,相似比即为椭圆的相似比;
③ 两个相似椭圆被同一条直线所截得的线段中点重合;
过原点的直线截相似椭圆所得线段长度之比恰为椭圆的相似比. ----20分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com