我们称为椭圆的特征三角形.如果两个椭圆的 特征三角形是相似的.则称这两个椭圆是“相似椭圆 .且三角形的相似比即为 椭圆的相似比. 查看更多

 

题目列表(包括答案和解析)

如图,已知椭圆的焦点和上顶点分别为,我们称为椭圆的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.

(1)已知椭圆,判断是否相似,如果相似则求出的相似比,若不相似请说明理由;

(2)若与椭圆相似且半短轴长为的椭圆为,且直线与椭圆为相交于两点(异于端点),试问:当面积最大时, 是否与有关?并证明你的结论.

(3)根据与椭圆相似且半短轴长为的椭圆的方程,提出你认为有价值的相似椭圆之间的三种性质(不需证明);

 

查看答案和解析>>

如图,已知椭圆的焦点和上顶点分别为,我们称为椭圆的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆,判断是否相似,如果相似则求出的相似比,若不相似请说明理由;
(2)若与椭圆相似且半短轴长为的椭圆为,且直线与椭圆为相交于两点(异于端点),试问:当面积最大时,是否与有关?并证明你的结论.
(3)根据与椭圆相似且半短轴长为的椭圆的方程,提出你认为有价值的相似椭圆之间的三种性质(不需证明);

查看答案和解析>>

如图,已知椭圆的焦点和上顶点分别为

我们称为椭圆的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为 椭圆的相似比.

(1)已知椭圆

判断是否相似,如果相似则求出的相似比,若不相似请说明理由;

(2)设短半轴长为的椭圆与椭圆相似,试问在椭圆上是否存在两点关于直线对称,,若存在求出b的范围,不存在说明理由.

查看答案和解析>>

已知椭圆C:的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1以抛物线的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

如图,已知椭圆的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆判断C2与C1是否相似,如果相似则求出C2与C1的相似比,若不相似请说明理由;
(2)写出与椭圆C1相似且半短轴长为b的椭圆Cb的方程,并列举相似椭圆之间的三种性质(不需证明);
(3)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.

查看答案和解析>>

一、          填空题:

 1、   2、   3、128  4、  5、64     6、 

 7、    8、    9、-4  10、15  11、

 12、(1)(2)(5)

二、选择题:

 13、D      14、  C    15、  B    16、 C

 

17、解:以A为原点,以AB、AD、AP所在直线分别轴,

建立空间直角坐标系。 -----2分

则  C(2,1,0) N(1,0,1)  =(-1,-1,1)---4分

        D(0,2,0) M(1,,1) =(1,-,1)---6分

的夹角为

  ----8分  

  ---10分

  异面直线所成的角为  -----12分

18、解:延长,作于D,------4分

,则

 ------8分

解得.------10分

故船继续朝原方向前进有触礁的危险.-----12

 

19、解: (1)因为f(x+y)=f(x)+f(y),

令x=y=0,代入①式,-----2分

得f(0+0)=f(0)+f(0),即 f(0)=0  --------4分

(2)令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,

则有0=f(x)+f(-x).------6分

即f(-x)=-f(x)对任意x∈R成立,

所以f(x)是奇函数.......8分

(3)    f(3)=log3>0,即f(3)>f(0),

又f(x)在R上是单调函数,所以f(x)在R上是增函数,----10分

又由(1)f(x)是奇函数.

  f(k?3)<-f(3-9-2)=f(-3+9+2),

k?3<-3+9+2,

------12

 ------------14分

20、解:(1)为等差数列,∵,又

是方程的两个根

又公差,∴,∴      --------     2分

   ∴   ∴     -----------4分

(2)由(1)知,         -----------5分

         ------------7分

是等差数列,∴,∴    ----------8分

舍去)                         ------------9分

(3)由(2)得                    -------------11分

  时取等号 ------- 13分

时取等号15分

(1)、(2)式中等号不可能同时取到,所以   -----------16分

 

 

 

21、解:(1)椭圆相似.   -----2分

因为的特征三角形是腰长为4,底边长为的等腰三角形,

而椭圆的特征三角形是腰长为2,

底边长为的等腰三角形,

因此两个等腰三角形相似,且相似比为.                                                                                                              --- 6分

(2)椭圆的方程为:.        --------8分

假定存在,则设所在直线为中点为.

.       -------10分

所以.

中点在直线上,所以有.        ----12分

.

.     -------14分

(3)椭圆的方程为:.        

两个相似椭圆之间的性质有:                          写出一个给2分

①     两个相似椭圆的面积之比为相似比的平方;

②     分别以两个相似椭圆的顶点为顶点的四边形也相似,相似比即为椭圆的相似比;

③     两个相似椭圆被同一条直线所截得的线段中点重合;

过原点的直线截相似椭圆所得线段长度之比恰为椭圆的相似比.    ----20分

 

 

 

 


同步练习册答案