如图,四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2AB=2
.
(1)求异面直线PC与AD所成角的大小;
(2)若平面ABCD内有一经过点C的曲线E,该曲线上的任一动点Q都满足PQ与AD所成角的大小恰等PC与AD所成角.试判断曲线E的形状并说明理由;
(3)在平面ABCD内,设点Q是(2)题中的曲线E在直角梯形ABCD内部(包括边界)的一段曲线CG上的动点,其中G为曲线E和DC的交点.以B为圆心,BQ为半径的圆分别与梯形的边AB、BC交于M、N两点.当Q点在曲线段GC上运动时,试提出一个研究有关四面P-BMN的问题(如体积、线面、面面关系等)并尝试解决.
(说明:本小题将根据你提出的问题的质量和解决难度分层评分;本小题的计算结果可以使用近似值,保留3位小数)